
Abstract
A descriptive overview of the use of the term “agent” is presented.
Some existing definitions of “software agents” are analyzed and
some distinctions between software agents and other types of soft-
ware using non-anthropomorphic criteria are suggested. Mobile
agents and speech-act agents are discussed as special cases of dis-
tributed computing. A test-case application implemented on two
Java-based platforms for mobile agents is presented. Some appli-
cations of agent technology in electronic commerce are presented.
Business logic conditions for the deployment of an open agent-
based market for automated electronic commerce is discussed.

Referat
Perspektiv på agenter -
En översikt med tillämpningar inom elektronisk handel

En deskriptiv översikt av bruket av termen ”agent” presenteras.
Några definitioner av termen ”programvaruagenter” analyseras och
några icke antropomorfistiska kriterier för att särskilja program-
varuagenter från annan programvara föreslås, liksom kriterier för
att kunna särskilja olika typer av programvaruagenter. Mobila
agenter och talaktsagenter diskuteras som särfall av distribuerade
programsystem. En testapplikation implementerad på två Java-
baserade plattformar för mobila agenter presenteras liksom några
tillämpningar av agentteknik inom elektronisk handel. Affärs-
mässiga förutsättningar för spridandet av ett öppet agentbaserat sy-
stem för automatiserad elektronisk handel diskuteras.

Preface
This document is a Master’s thesis in computer science with which
I complete my studies at the Department of Numerical Analysis
and Computing Science (Nada) at Stockholm University, Sweden.
My Master’s project has been carried out at the Swedish Institute
for Information Technology (SITI) as a part of the Tahuti project
[SITI 1999]. My Nada supervisor has been Kjell Lindqvist. My su-
pervisor at SITI has been Thomas Alexandre, project manager of
the Tahuti project. For their patience, support and inspiration I
thank them both. Sverker Janson and Joakim Eriksson at Intelligent
Systems Laboratory at Swedish Institute of Computer Science
(SICS) have provided me with valuable material on agents and on
their work on the Agent-Based Market Space. Helene Wallgren at
the Electronic Commerce Lab at SITI has supplied a section re-
garding legal aspects on agent technology for which i thank her
dearly. I also would like to thank the rest of my new friends and
colleagues at SITI and in particular the team at the Electronic
Commerce Lab: Bernd Stadler, William Song, Mathias Bjarme,
Stina Eklöf and Patrik Axelsson. Judith Chrystal has reviewed the
manuscript and given valuable comments on my English.

Examiner is Professor Johan Håstad, Nada

Kista 31 May 1999

Jonas Edlund

Contents
Words followed by asterisk* are explained in the glossary.

1 Introduction..9

1.1 Problem..9

1.2 Aim ..10

1.3 Method ...10

1.4 Organization...11

2 “Agent” and “Agency” – usage and definitions ..12

2.1 A Dictionary’s View of Agents ...12

2.2 A Descriptive View of Agents...13
2.2.1 Non-Software Agents...14
2.2.2 Software Agents...14

2.3 Linguistics: “Agency” as Conscious Action..................................15
2.3.1 “Conscious” ...15
2.3.2 “Acting” ...16
2.3.3 Agency: A Metaphor..16

2.4 Agency in Design, Implementation and Use of Software............17

2.5 Attributes of “Agency” ..18
2.5.1 Wooldridge’s and Jennings’ weak notion of agency18
2.5.2 Wooldridge’s and Jennings’ stronger notion of agency....22
2.5.3 Additional Attributes of Agency..23

2.6 Are Agents Going Out of Style?...25

2.7 Summary ..26

3 Distributed Computing..28

3.1 Definition ...28

3.2 Differences between distributed and local computing.................28
3.2.1 Latency...29
3.2.2 Memory access...29
3.2.3 Partial failure..29
3.2.4 Concurrency...29

3.3 RPC – Remote Procedure Call...29

3.4 Object-Oriented Distributed Computing.......................................30
3.4.1 OMG – Corba ..31
3.4.2 Microsoft and DCOM..32
3.4.3 Java RMI and Serialization..33
3.4.4 Reaching the Holy Grail: Oz – Mozart34

4 Mobile Agent Systems...36

4.1 General Aspects ...36
4.1.1 Definition ...36
4.1.2 Basic Model ...37
4.1.3 Security ..37
4.1.4 Persistence..38
4.1.5 Advantages...38
4.1.6 Critical Aspects..39

4.2 Existing Mobile Agent Systems..40
4.2.1 Non Java Systems ..40
4.2.2 Java Systems ..41

5 Mobile Agents Test Case: DiSolver ..45

5.1 DiSolver – Grassroots Parallel Computing....................................45
5.1.1 Splitting Problems and Assembling Solutions..................46

5.2 DiSolver: Corporate Version – Outline ..46
5.2.1 Central Algorithm ..47

5.3 Design: System ..47
5.3.1 Environment...47
5.3.2 Abstract class Problem...48
5.3.3 Abstract class Solution...48
5.3.4 DiSolver ...49

5.4 Design: Addition of Integers..50
5.4.1 Addition (extension of Problem)50
5.4.2 Sum (extension of Solution) ..50

5.5 Evaluation of two Java Mobile Agent Platforms..........................51
5.5.1 Similarities ...51
5.5.2 IBM Aglets v.1.1 Beta ...51
5.5.3 ObjectSpace Voyager v.2.0..52
5.5.4 Comparison ..53

6 Speech-Act Agents...54

6.1 Introduction..54

6.2 Agent Communication Languages..56
6.2.1 ARPA’s Knowledge Sharing Effort...................................56
6.2.2 KQML and KIF..56
6.2.3 General and Reusable Ontologies57
6.2.4 Fipa ACL ...58
6.2.5 Discussion: ACLs, Standards and Complexity59

6.3 MAS – Multi Agent Systems...60
6.3.1 Load balancing – Market Oriented Programming60
6.3.2 Glueware ..61

7 Agents in Electronic Commerce ..62

7.1 Electronic Commerce...62

7.2 Business-to-Consumer ...63
7.2.1 A Business Model ..63
7.2.2 Need Identification...65
7.2.3 Product and Merchant Brokering.......................................65
7.2.4 Negotiation...67
7.2.5 Purchase and delivery ..69
7.2.6 Product service and evaluation ..69

7.3 A general open Agent-based market...70
7.3.1 SICS Market Space ..70
7.3.2 Mobile or Stationary? ..76

7.4 Info Mining – Amalthaea...76
7.4.1 Design Metaphor..77

7.5 Legal Aspects (By Heléne Wallgren)..78

7.6 Summary and Discussion...80
7.6.1 Business Logic ...80
7.6.2 Metadata Descriptions and Interoperability.......................82
7.6.3 Future Winners...83

8 Impersonating Agents ..85

8.1 Interface Level ...85
8.1.1 Virtual Friend...85
8.1.2 Sylvie and Julia ..85

8.2 Implementation level ...86
8.2.1 Artificial Life: Creatures..86
8.2.2 Real Life on Computing Substrate.....................................86

9 Conclusions..88

10 References..89

11 Glossary ...99

9

1 Introduction
“My name is Agent, Software Agent"

In the 1990s there has been much talk about software agents. Fu-
ture scenarios have been given where software agents help us with
our daily lives in many different ways. They help us buy a new car
or to make reservations for our holiday trip. They sort our mail and
they help us to find what we are looking for on the WWW – or
what we do not yet know that we are interested in. The expecta-
tions on software agents a few years ago were very high. It was
thought that they should act as mediators or communicators be-
tween the naïve end-users and the sophisticated and incomprehen-
sible software of today and tomorrow. And they should act as
glueware between otherwise incompatible software systems. Many
of these expectations have – as yet – not been fulfilled, but much
promising work is underway.

In the world of software the use of the word agent became frequent
in the AI heydays of the 1970s and 1980s. We got Artificial Intel-
ligence, Thinking Machines and Intelligent and Autonomous
Agents. The vision of software agents as our servants (or slaves)
that we can create and destroy at will and that obediently fulfill our
wishes was, and is, very compelling. It is also confusing. Computer
programs do not think or act autonomously. They are executed on
computers.

However disturbingly animistic* the terms may be, “Intelligence”,
“Autonomous” and “Agent” are probably in computer science, or
at least in the software industry, to stay. They are useful as ab-
straction mechanisms if you know that that is what they are and if
you know their use and meaning.

1.1 Problem
• What are software agents?

• What do they do?

• How do they work?

• What is agent technology or agent-based programming?

• What kinds of applications are suitable for agents?

10

• What do software agents do in electronic commerce?

• What can they do in electronic commerce?

The original assignment for this thesis work was “Intelligent
Agents in Electronic Commerce”. The first and obvious question
was “What are software agents?” Investigations revealed the term
“agent” as ambiguous. It has been applied to many different phe-
nomena, many of which, when more closely examined, have little
to do with each other.

“Agent” is a buzzword used in sales as well as in fundraising and
often its use displays a strong tendency towards unnecessary an-
thropomorphisms. This leads to high expectations that can be ex-
ploited on a short basis but there are no gains to be made in the
long run. A potent term like “agent” can be very confusing if not
defined rigorously. Inexact concepts always result in bad science.

1.2 Aim
• Useful concepts, definitions and distinctions

• Categorization and taxonomy

• Understanding of the underlying technology

• Overview of existing applications in automated electronic
commerce

1.3 Method
We have tried to sort out the terminology and look behind it to the
underlying software technology to see what it is, how it works and
what it has been and what it can be used for. We have concentrated
on four topics:

• A concept analysis of “agent” and “agency” by a survey and
critique of usage and definitions of the terms. We investigate
how usage and meaning of the terms differ in different con-
texts.

• A closer study of mobile agents and speech-act agents as spe-
cial cases of distributed computing,

• A brief study of impersonating agents,

• Some example applications in electronic commerce and enter-
tainment.

11

1.4 Organization
Section 1
An introduction presenting problem, aim and method of the paper.

Section 2
An overview of software agents with focus on usage of the terms
“agent” and “agency” and analyses of some proposed definitions.
Some non-anthropomorphic criteria on agency are discussed.

Section 3
A technical overview of distributed computing. It can be skipped if
the reader has previous knowledge on the subject.

Section 4
A discussion on mobile agents as a special case of distributed
computing with special focus on Java-based platforms

Section 5
A description of a test case application and its implementation on
two Java-based mobile agent platforms.

Section 6
A discussion on speech-act-based agents.

Section 7
An overview on applications in electronic commerce with focus on
the business-to-consumer domain.

Section 8
Some examples of impersonating software agent applications in
entertainment are presented. The distinction between matter and
spirit is discussed in the perspective of the artificial life metaphor.

Section 9
Some concluding remarks.

Glossary
Words followed by asterisk* are explained in the glossary.

12

2 “Agent” and “Agency”
– usage and
definitions

The (agent) metaphor has become so pervasive
that we’re waiting for some enterprising company

 to advertise its computer switches
as empowerment agents.

[Wayner, P. & Joch, A.,
 "Agents of Change",

Byte, March 94-95,
1995, p. 95.]

The concepts “agent” and “agency”, the property of being an
agent, are used in very different ways and in different context by
different authors. In this section we will look at usage of these two
terms and different complementing attributes that often come along
with them, as “intelligent”, “autonomous”, “mobile” etc. We will
analyze how this terminology can or cannot be used to distinguish
between different kinds of software. Are there any criteria that
make software agents distinct from other software? We will look at
some suggested definitions and suggest some distinctions of our
own.

2.1 A Dictionary’s
View of Agents
In the Merriam-Webster [1999] dictionary, we find the following
definitions of the word “agent”:

13

1 One that acts or exerts power

2a Something that produces or is capable of producing an ef-
fect: an active or efficient cause

2b A chemically, physically, or biologically active principle

3 A means or instrument by which a guiding intelligence achieves a result

4 One who is authorized to act for or in the place of another: as

• a representative, emissary, or official of a government <crown agent>
<federal agent>

• one engaged in undercover activities (as espionage) : SPY <secret
agent>

• a business representative (as of an athlete or entertainer) <a theatrical
agent>

[Merriam-Webster 1999]

Later in this paper we refer to these as MW1, MW2a etc.

Someone who acts, something that produces an effect should thus
qualify as an agent. According to this definition, “agent” is a very
wide concept. MW2a cover many inanimate objects, especially in
unexpected situations like accidents: “The needle made the balloon
burst”. MW3 covers most artifacts: “The parachute saved my life”.

If we concentrate on MW1 and MW4 we see that an “agent” is
someone or something that is potent, active, autonomous, hope-
fully at your service and under your control, but also possibly un-
predictable and potentially harmful. Does this also apply to soft-
ware agents?

2.2 A Descriptive View
of Agents
“Agent” is a precious term and many different parties want to re-
serve it for their own particular definition. We take a descriptive
stance and investigate the meaning of the terms by looking at how
they are used.

14

2.2.1 Non-Software Agents
If we start out from a descriptive, unbiased position and look at the
use of “agent” and “agency” outside the world of software, we find
examples like

• Agent/Impresario – agent of artists, helps the artist in business
relations, e.g. gives help in examining and closing contracts, a
business representative,

• Travel Agent – helps with travel arrangements,

• Sewing Machine Agent – sells you a sewing machine,

• Booking Agent – can book an artist for a theater

• Free Agent – is free to act in whichever way he or she likes,

• Active Chemical Ingredient – the ingredient that makes it hap-
pen,

• Leavening agent (q.v.) used in making baked goods – makes
your dough rise.

• James Bond – secret agent, needs no further introduction.

2.2.2 Software Agents
In the world of computer programs we see “agent” used in many
different ways. Here are some examples with preliminary defini-
tions:

• Software agent: a program or a piece of code that is also an
agent,

• Intelligent agent: program that exhibits intelligent behavior.
Intelligence remains to be defined,

• Autonomous agent: Autonomy remains to be defined,

• Adaptive autonomous agents: Adapts to its environment,

• Mobile agent: Migrating code, code that moves from one ma-
chine to another as a part of its execution,

• Impersonating agents: software that projects a believable per-
sona on to the user/audience,

• User-interface agents: software that helps a user to be more
effective. If a word-processor was equipped with a such an
agent it could suggest to the user more effective ways to ac-
complish something that the user often does, e.g. by writing a
macro definition to change between two different fonts,

15

• Typed-message-agents: agents that communicate with typed
messages

• Speech-act agents: a type of typed-message agents modeled
on modeled on natural speech

• Coordinated agents or

• Multi Agent Systems: A group of software agents cooperate
to solve a (common) problem.

• Assistant agents: The function of an assistant agent is to make
a system friendlier to the end-user. It may help with mail sort-
ing, information filtering, scheduling, finding interesting web-
pages etc.

These categories are not disjunct, most “agents” fall into several of
them.

2.3 Linguistics: “Agency” as
Conscious Action
In linguistics the “semantic agent” in a sentence refers to the ini-
tiator of the action described by the verb. In the sentence “Joe
kicked the ball”, “Joe” is the semantic agent. Agency refers to
animate action, i.e. the one that acts is or can be thought to be (our
italics) conscious of or able to influence the action, as opposed to
inanimate action which is referred to as “cause”. [Jörgensen and
Svensson 1986, p88].

Add to this the Merriam-Webster definition and we see that
“agent” is an enormously wide concept: one that acts, an instru-
ment to accomplish a task. And as we shall see, almost anything
can be an agent.

2.3.1 “Conscious”
Can software be thought of as being conscious? Maybe a naïve
end-user can, in frustration over a perceivably hostile program.
“This ------ program!!! If you do that again, I´ll kill you!” But for
the most part we do not think of software as being conscious. We
can talk about software as if it is conscious, as a matter of fact we
do that often: “The program expects you to type your e-mail ad-
dress”, “The program believes you want all mail from siti.se in the
SITI folder”. If an entity like a computer program behaves as if it
had certain beliefs or intentions one can say in an informal way
that it has those beliefs and intentions, even if we understand that

16

there is no one “inside” the program, knowing or doing anything.
This is quite close to the “New Turing Test” of Hayes-Roth et al.
[1999]. This way of thinking about software was elaborated and to
some extent formalized by John McCarthy [1979]

To ascribe certain beliefs, knowledge, free will, inten-
tions, consciousness, abilities or wants to a machine or
computer program is legitimate when such an ascription
expresses the same information about the machine that it
expresses about a person. It is useful when the ascription
helps us understand the structure of the machine, its past
or future behavior, or how to repair or improve it. It is
perhaps never logically required even for humans, but
expressing reasonably briefly what is actually known
about the state of a machine in a particular situation may
require ascribing mental qualities or qualities isomorphic
to them.

(Our italics)[McCarthy 1979]

Can “conscious” be used to distinguish software? Is there con-
scious software and unconscious software? No, there is not.
“Conscious” is not a property of any software. It belongs to the
domain of Experience of Software or Thoughts about Software,
and can thus be relevant in design and use of software.

2.3.2 “Acting”
Does software act? In the meaning “changing the state of its envi-
ronment”, most software do. That is why we use it. But as with
“conscious”, it is pointless to distinguish acting software as agents
and non-acting software as non-agent if we look only on the im-
plementation. “Acting” also belongs to Thoughts about Software
and can be useful in the design and use phases.

2.3.3 Agency: A Metaphor
There is no consciously acting software. So however the terms are
used, “agent” and “agency” are metaphors. Software agents may
act as if they were “conscious of what they were doing”. In the
following we will examine how these metaphors are used and
whether or not they have a useful meaning in computer science.

17

2.4 Agency in Design,
Implementation and
Use of Software
The Norwegian researcher Christen Krogh of SINTEF Telecom
and Informatics has made some very useful distinctions. He points
out that the agent metaphor is used in very different ways in differ-
ent phases of the software lifecycle. We have changed his original
distinctions slightly.

• In design: to denote logical parts of a system that has some
kind of autonomy,

• In implementation: to denote executable objects with agent
characteristics,

• In use of software: The end-user interface is described with
the agent metaphor:

• In marketing: The agent metaphor is used for selling the sys-
tem,

• In end-user training: The end-user is encouraged to think of
the system as an autonomous agent,

• In experiencing or talking about the system: The system is
experienced or talked about as an autonomous agent.

[Krogh 1996].

The “IDs” of the Amalthaea info-mining system described in sec-
tion 7.4 is an example of agents at the design level as are the
agents of the trading systems in section 7.2. The speech-act agents
in section 6 or mobile agents in section 5 are examples of agents at
the implementation level as are Creatures of section 8.2.1. The rest
of the impersonating agents described in section 8 fall in the cate-
gory of interface-level agents.

The actual software is present only at the level of implementation,
i.e. software consists of executable code. Modeling and design,
however useful, belong to the domain thoughts about software as
do the experiencing of software user interfaces.

This has relevance for the discussion on agency as well as for that
on AI*. Much of the controversy over the question whether or not
machines really can be autonomous agents or intelligent entities
resolves if we make distinct in which phase we apply the concept,
in design, in implementation or in use. Compare to how we look at
ourselves. Do we see intelligence at the level of neurons?

18

2.5 Attributes of “Agency”
In this section we examine some of the attributes that are fre-
quently used together with “agent” and “agency”. We start with a
close examination of some of the distinctions of one of the most
cited papers in the literature on agents, “Intelligent Agents: Theory
and Practice” by Michael Wooldridge and Nicholas Jennings. In
the end of this section we will look at some additional attributes.

2.5.1 Wooldridge’s and Jennings’
weak notion of agency
One of the most cited papers on software agents is Wooldridge and
Jennings [1994], an adaptation of Michael Wooldridge’s Ph.D.
thesis. The authors have a background in the AI tradition. It gives a
good overview of theories, architectures and languages regarding
agents. In the following we will examine their weak notion of
agency, strip away its anthropomorphisms and present it in a more
dry, software engineering sort of way. Their stronger notion of
agency is treated in a later section. This is the weak notion of
agency of Wooldridge and Jennings:

A weak notion of Agency

Perhaps the most general way in which the term agent is
used is to denote a hardware or (more usually) software-
based computer system that enjoys the following proper-
ties:

Autonomy: agents operate without the direct interven-
tion of humans or others, and have some kind
of control over their actions and internal state.

Social ability: agents interact with other agents (and
possibly humans) via some kind of agent-
communication language [Genesereth and
Ketchpel 1994:a].

Reactivity: agents perceive their environment, (which
may be the physical world, a user via a graphi-
cal user interface, a collection of other agents,
the INTERNET, or perhaps all of these com-
bined), and respond in a timely fashion to
changes that occur in it.

19

Pro-activeness: agents do not simply act in response
to their environment, they are able to exhibit
goal-directed behavior by taking the Initiative.

[Wooldridge and Jennings 1994]

Let us examine these criteria, first one at a time and combined. The
title of Wooldridge and Jennings [1994] is “Intelligent Agents:
Theory and practice”, so for the sake of completeness, let us start
with “Intelligence”. The stronger notion of agency is discussed in
section 2.5.2.

2.5.1.1 Intelligence
There is no definition of “intelligence” in Woold-
ridge and Jennings [1994]. Lots of effort has been spent on arguing
about definitions of the term, so maybe it is wise to leave it alone.
Most authors seem to agree that, in the end, intelligence is in the
eyes of the beholder. This is consistent with the notions in section
2.4. “Intelligence” is most useful in design and in describing user
interfaces. A mainstream definition of “Intelligent Software”
would be something like this:

Intelligent software is able to respond in a useful and consistent
way to a variety of input. The larger the usefulness, consistency
and variety, the more intelligent the software. For example, an in-
telligent personal assistant that can help me with booking travel-
ling tickets and finding best prices for CDs would look quite intel-
ligent. If it also updated my calendar in a way consistent to the
travelling reservations it would look even more intelligent.

Another approach is from language: intelligent software communi-
cates in a (reasonably complex) language and interacts in a way
that is consistent with what it communicates.

For software, agent or not, as for humans, there is no sharp line
between intelligence and non-intelligence. For most definitions of
the term, intelligence is a continuum criterion for any system.

“Intelligence” defined in this way is not really useful to distinguish
between different types of software. Software that adheres to its
specification is intelligent in its own humble way.

2.5.1.2 Autonomy
Wooldridge and Jennings, [1994] had this definition of autonomy:

Autonomy: agents operate without the direct inter-
vention of humans or others, and have some
kind of control over their actions and internal
state

20

All software, agent or not, is executed without direct human inter-
vention by the underlying system as long as that system is up and
running. “Operate”, on the other hand, can mean performing inter-
action with other software or with other humans than the original
launcher of the program. If these “operations” are done without di-
rect manipulation by the original launcher, it starts to look
autonomous. The more autonomous in this sense, the more agent-
like is the software. This criterion is sharp if it is fulfilled by one
such interaction, and then a continuum from the simple to the
complex with lots of autonomous interaction.

What about control over actions and internal state? Programs may
act in the meaning “changing their environment”, and they may
carry state but as far as control is concerned they shall adhere to
their specification. For the most part, we do not want software to
take any initiatives beyond the programmer’s intentions.
“…control over their actions and internal state” does not make
much sense when it comes to software, for the most part.

Another approach to autonomy is found in Artificial Life, cf. sec-
tions 2.5.3.7 and 8.2. Petrie, [1996] has a good discussion on
“autonomy” of agents.

2.5.1.3 Social ability
The definition was:

Social ability: agents interact with other agents (and
possibly humans) via some kind of agent-
communication language [Genesereth and
Ketchpel 1994].

This quote is from a version of Genesereth and Ketchpel, [1994]
we have not been able to obtain. In the one we did find, we find the
following criterion:

The criterion for agenthood is a behavioral one. An entity
is a software agent if and only if it communicates cor-
rectly in an agent communication language like ACL.
This means that the entity must be able to read and write
ACL messages, and it means that the entity must abide by
the behavioral constraints implicit in the meanings of
those messages.

This is a sharp criterion. The ACL mentioned is developed within
ARPA’s Knowledge Sharing Effort. ACL is a declarative inter-
agent communication language. Note that a simple program that
communicates with a small subset of ACL would also be an agent
according this criterion alone. [Finin and Fritzson 1994],

21

2.5.1.4 Reactivity and Pro-activeness

Reactivity: agents perceive their environment, (which
may be the physical world, a user via a graphi-
cal user interface, a collection of other agents,
the INTERNET, or perhaps all of these com-
bined), and respond in a timely fashion to
changes that occur in it;

This property is hard to distinguish from the autonomy of section
2.5.2

Pro-activeness: agents do not simply act in response
to their environment, they are able to exhibit
goal-directed behavior by taking the Initiative.

We can see a connection between the “…control over their actions
and internal state” in the definition of autonomy and pro-active-
ness. If a computational entity changes its environment not only as
a result of calls or messages from the outside, but as a result of its
own evaluation of its inner state (in relation or not to the state of its
environment), then it is proactive.

This is an extension of autonomy: The agent can act without first
being stimulated. As Petrie [1998] points out, this is an important
distinction as it states that an agent is something more than a server
in the classical client-server model.

2.5.1.5 The Weak Notion’s Criteria Combined
If we combine these four criteria, as Wooldridge and Jennings say
we should, what do we have? With our own interpretations, this is
what we get:

A software agent

• interacts without direct manipulation from the original launcher
of the program with other agents or with humans

• communicates (with humans and/or other agents) in a (declara-
tive) inter-agent communications language and functions in a
way consistent with what it communicates.

This definition comes close to what Petrie [1998] calls typed-mes-
sage agents and also to the definition of software agents of Gene-
sereth and Ketchpel [1994:b]. We use the term speech-act agents
as a common name for similar agents. More on speech-act agents
follow in section 6.

22

2.5.2 Wooldridge’s and Jennings’
stronger notion of agency
After having presented their weak notion of agency Wooldridge
and Jennings turn to what they call “a stronger notion of agency”.
We have put the central part in bold text.

For some researchers - particularly those working in AI -
the term “agent” has a stronger and more specific mean-
ing than that sketched out above. These researchers gen-
erally mean an agent to be a computer system that, in
addition to having the properties identified above, is
either conceptualized or implemented using concepts
that are more usually applied to humans. For example,
it is quite common in AI to characterize an agent using
mentalistic notions, such as knowledge, belief, intention,
and obligation [Shoham 1993]. Some AI researchers have
gone further, and considered emotional agents [Bates
1994][Bates et al. 1992a]. (Lest the reader suppose that
this is just pointless anthropomorphism, it should be noted
that there are good arguments in favor of designing and
building agents in terms of human-like mental states - cf.
section 2.) Another way of giving agents human-like at-
tributes is to represent them visually, perhaps by using a
cartoon-like graphical icon or an animated face [Maes
1994] - for obvious reasons, such agents are of particular
importance to those interested in human-computer inter-
faces.

[Wooldridge and Jennings 1994]

A software implementation does not consist of concepts, but of
computer code. Normally we use a high level language like C,
C++, Java, Simula or Smalltalk to create that code. The imple-
mentation is the code in the same way that a building is the physi-
cal thing you live in, not the drawings on which the construction
once was based. When we have lunch we eat food, not recipes.
Concepts that apply to humans and used to create computer code
may be visible in the source code on high levels of abstraction, but
not in the executables that result from compilation and optimiza-
tion, or in the workings of interpreters (in the case of interpreted
languages).

In the same way: the concepts used for conceptualizing (sic!) or
designing the software may be visible on high levels of abstraction
in the source, but not in the executable. If we reverse engineer the
compiled code of an expert system we do not get high level models
of “the world”, we get (the remains of) if-clauses.

23

Concepts usually applied to humans may be useful in modeling
and design and they certainly show up in the experience of many
people interacting with software. Can this stronger notion of
agency be used to distinguish between different types of software?
If we with software mean executables, we say no. If we mean
software design or experiencing of user interface we may say yes.
Using mentalistic notions or not in these phases seems to be a
question of perspective, style and tradition.

2.5.3 Additional Attributes of Agency

2.5.3.1 Mobility
Mobile agents are pieces of executable code that as a part of their
execution migrates from one address space to another. This is a
working criterion for distinguishing between software. Mobility is
however totally independent of agency as defined in section
2.5.1.5. A mobile agent can be, but does not have to be an agent
according to 2.5.1.5, and an agent according to 2.5.1.5 can be, but
does not have to be mobile. So when talking about mobile agents,
we prefer not to call them “agents” only, but to keep the notion of
mobility separate. More on mobile agents is found in sections 4
and 5.

2.5.3.2 Persistence
A program that is persistent over time looks more autonomous and
thus more agent-like. If a program is up and running a week or a
year after its launch, then it looks self-propelling and autonomous.
This kind of autonomy is also a continuum. Many persistent pro-
grams like mailer-demons, mail-servers, WWW-servers do not
qualify for agency. The notion of persistence alone does not cap-
ture the nature of “agency”.

Persistence may also refer to the ability to survive the environ-
ment. Most agent systems have some kind of persistent storage for
its agents so that they can be restored after crashes or halted exe-
cution of the agent environment.

2.5.3.3 Learning, Adaptive
Learning software adapts to the environment and gets better at
solving its assignment over time. A neural net is adaptive in this
sense. The intuistic notion of “agent” does not seem to cover neu-
ral nets in themselves, but an agent that is also adaptive seems to
reach a higher level of agency.

2.5.3.4 Acting on someone else’s behalf
An important property of many “agents” is “acting on someone
else’s behalf”. In this category we find non-software like the secret

24

agent, travel agent and the artist’s booking agent. In our list of
software agents from section 2.1.2, we have Assistant Agents and
Programmed Participants as agents working on someone else’s be-
half. The User-interface Agents could possibly be placed in this
category.

Some authors claim “acting on someone else’s behalf” to the con-
stituent factor of agency. In the 1998 summer edition of AI Maga-
zine, a special issue on agents, Katia P. Sycara writes in her intro-
duction:

Agency was defined by Eisenhardt [1989] and mathe-
matically modeled. An agency relationship is present
when one party (the principal) depends on another party
(the agent) to undertake some task on the principal’s be-
half (Our italics). The notion of agency covers coopera-
tive coordination in MASs (multiagent systems) (agents
depend on each other to perform their tasks); delegation
in human interface design; object-orientated program-
ming, where an object is using another; and self-interested
coordination through contracting in MASs. [Sycara 1998],
[Eisenhardt 1989].

This is close to being a means or instrument in the sense of MW3.
Eisenhardt´s paper is often cited in literature on management the-
ory. As “party”, it seems, could refer to anything, this definition of
“agency” is not very useful to discriminate between agent and non-
agent software, or hardware. A word processor used to accomplish
a task would turn into a word processing agent, a printer to a
printer agent and so on.

2.5.3.5 Representing
In the category of “representing” in the sense of MW4 we have the
federal or secret agent, business representative or the theatrical
agent. They are all representatives of someone else. The Solicitor
also belongs here. The difference between MW4 and MW3 is that
in MW4 the agents interact with other agents whereas the MW3
agents just get deployed by their users. MW4 is thus a special case
of MW3.

The agents in SICS MarketSpace discussed in section 7.3 would
fulfill this property. These are also speech-act-based agents.

2.5.3.6 Impersonating agents –“Agency’” as Gestalt
By impersonating agents we understand software that project a be-
lievable persona on to the user/audience. The program appears to
the user/audience as someone. Weizenbaum's Eliza is the classical
example. Modern Elizas are even more believable.

25

Is “impersonating” a working criterion for software agency? Can
we distinguish between impersonating software and non-
impersonating software? By looking at the software itself, we can
not. We can in many cases detect the intentions of the programmer
and some software are better impersonators than other but person-
ality is still experiential and belongs to Thoughts about Software.

In section 8 there are more on impersonating agents.

2.5.3.7 Artificial Life
In the discussion of autonomy of section 2.5 we stated that true
autonomy does not make much sense when it comes to software,
for the most part.

There is, however, an approach to software where real autonomy is
desired and in some sense also achieved and that is Artificial Life.
The idea is to construct, in a bottom-up fashion, the basic building
blocks – the agents - and to give these the ability to breed, mutate
and evolve. If proper feedback is built into the system the agents
can adapt in an evolutionary way and solve a task with increasing
efficiency. The Amalthaea information filtering system of the MIT
Media Lab and the entertainment software Creatures of CyberLife
Ltd. are two very different examples that are designed from this
perspective. Cf. section 8.2 for more. [MIT 1999], [Creatures
1999],

2.6 Are Agents
Going Out of Style?
Krogh [1996] has a list of agent research projects and commercial
products and services that were attracting attention at the time.
Some of them are still up and running, some are not. Some of them
have stopped using the term “agent”, at least on their web-sites.
From the examples on Krogh’s list these sites has dropped the use
of “agents”: Firefly [1999], PointCast [1999] and My Yahoo
[1999]. These sites still talk about “agents”: EUNett [1999], Verity
[1999], Lotus [1999], Aglets Mobile Java agents, IBM [1998] and
Banyan [1999].

Lotus uses the agent metaphor extensively. In Lotus Notes, a pro-
gram for e-mail, calendar, group scheduling and so forth, the users
can create “agents” that perform routine tasks like sending an
automatic e-mail response when the user is on vacation. This is an
agent at the user-interface level.

26

Scientific statements cannot be made from the short list of Krogh,
but after having chased software agents all over the Internet for the
last six month I have the impression that the usage of “agents” to
sell programs like the Lotus Notes mail-answering facility is de-
creasing. This can be seen as a parallel to the decline of
“intelligence” in software marketing since the peak of AI. Many
companies nowadays keep their use of AI technology like neural
nets, fuzzy logic or expert systems to themselves. [Waltzman
1998].

2.7 Summary
“Software agents” is a metaphor for autonomous software. Agents
are software systems, or parts of software systems, which are in
some sense autonomous. Many definitions of agency exist and
many of them display a strong tendency toward
anthropomorphizing the software. We have tried to provide criteria
free from anthropomorphic metaphors to distinguish software
agents from other software and to make distinct different types of
software agents.

There is not one agent technique or type of software. The agent
metaphor can be used on many stages of the software life cycle:

• In design to denote logical objects with some kind of auton-
omy. Example: Amalthaea info-mining system, section 7.4.

• In implementation to denote objects with agent characteristics.
Example: mobile agents, section 5, speech-act agents, section 6

• In use of software to denote a user interface that is perceived as
having a gestalt of its own. Examples: Eliza, section 8,
Amalthaea, section 7.4, Creatures, section 8.2, Lotus Notes
Agents, section 2.6.

Apart from having specific meanings, “agent” is a sales-word. It
can be used to sell James Bond movies and detergents, as well as
computer programs. Researchers also do have to sell their research
projects to their superiors and to funding agencies.

Being a language police in the world of software is job for a lin-
guistic Sisyphus; it is simply too much to do. However, because of
the ambiguity of the terms “agent” and “agency” we recommend
the uttermost care when using them as to avoid confusion. When
other terms are as appropriate, use them instead, or use further
specification. When you here about “agents” and “agent technol-
ogy”, ask for clarification if the exact meaning is not provided by
the context.

27

There are many valuable “agent techniques”. Some of them will be
examined in following sections of this paper.

28

3 Distributed
Computing
In this section we make an overview of distributed computing.
Readers that are familiar with the field can browse through it and
continue with the section on mobile agents. The objective of this
section is not to give a full treatment of distributed systems but to
put mobile agents into perspective by presenting how distributed
computing differ from local computing, platforms for distributed
computing and efforts made to standardize interoperability be-
tween distributed systems of different platforms.

3.1 Definition
We make a distinction between local computing and distributed
computing. With local computing we mean programs that are con-
fined to a single address space. Distributed computing refers to
programs that make calls to other address spaces, possibly on other
machines. [Waldo, Wyant, Wollrath, Kendall 1994]

Mobile agent technology is a special case of distributed computing.

3.2 Differences between
distributed and local
computing
A programming language or environment where function calls,
objects and all other computational entities can be treated the same
whether they are local - stored in the address space of the current
process - or distributed – stored somewhere else – is said to have
the property of location transparency. Location transparency has
been said to be The Holy Grail of distributed computing. Location
transparency makes writing distributed systems easy.

Whether a programming system is location transparent or not there
are four areas where distributed computing is fundamentally dif-

29

ferent from local computing, namely latency, memory access, par-
tial failure and concurrency.

3.2.1 Latency
Regardless of the increase of bandwidth of network connections a
call on a remote object will for the most part be slower than on a
local object, something which has to be considered when designing
a distributed system.

3.2.2 Memory access
Pointer arithmetic cannot be permitted on a remote address space
as the different address spaces are managed by two different oper-
ating systems instances. Allowing pointer arithmetics would be
bad security and result in non-robust software. In C or C++ that
could be a problem and C or C++ programmers might need to alter
their style of programming when working on a distributed system.
In Java, pointer arithmetic is not possible.

3.2.3 Partial failure
In distributed systems one has to cope with failure of parts of the
system. Machines can crash and network connections can fail.
Partial failure of the system must normally be treated at the appli-
cation level. We need methods that throw exceptions and the pro-
grammer needs to keep track of calls to servers so that he can call
others if responses are not received in due time. And he must also
keep track of incoming answers from different servers. A server
can answer too late, after a timeout.

3.2.4 Concurrency
In distributed systems there are concurrency problems as dead-
locks, race conditions etc. [Waldo, Wyant, Wollrath, Kendall
1994]

3.3 RPC – Remote Procedure
Call
With RPC the programmer can write code that issues an execution
of a routine on another host. The idea is to make that call as trans-
parent as possible to the programmer. This means hiding the

30

communication between the calling client and the answering server
from the programmer. In the classical client – server model the call
to the distant procedure or function is actually a call to a local ver-
sion of it, called the client stub. The client then blocks until the call
returns. The client stub puts the parameters, if any, into a message
and asks the kernel* to send it to the server stub bound to the ac-
tual server on the remote machine. The kernel passes the message
to the server stub, which unpacks the message and calls the actual
server with the delivered parameters. The server returns the result
to its stub, the stub packs the result into a message and asks the
kernel to deliver it to the client stub. The client stub unpacks the
message and delivers the result to the original caller, which has
been blocked since it performed its call. The packing and unpack-
ing of parameters and results are sometimes called marshalling and
unmarshalling.

The point with this long chain of calls and responses is that differ-
ent aspects of the required computations are separated. The caller,
or rather the linker, needs only keep track of where the client stub
is. The client stub, on the other hand, can have a whole list of serv-
ers to chose from. If one server does not answer fast enough, it can
ask another one. Or the system administrator can change the client
stub so that a new and better server implementation is called. The
server does not need to be bothered with who is calling it, or from
where. It gets a call, looks at the parameters and returns a result,
just as any (local) routine. [Tanenbaum 1992].

3.4 Object-Oriented
Distributed Computing
Object-oriented distributed computing is about being able to call
member functions on remote objects. This is sometimes called re-
mote method invocation, even though this term nowadays mostly
refers to Java RMI*, the Java Remote Method Invocation.

In a world of computer networks it is desired that objects written in
different languages and in different styles can call methods on each
other – provided of course that they have been given permission to
do so. This can be achieved if calls are performed in a uniform
way. Different efforts have been done to specify standards to
achieve this aim, some of which are briefly presented in the fol-
lowing sections.

In later years distributed computing often include moving objects
between address spaces. This is certainly the case when we get to
mobile agent technology.

31

3.4.1 OMG – Corba
The main objective of the Object Management Groups Corba ef-
fort is to establish standards of interoperability between distributed
systems of different platforms.

3.4.1.1 The Object Management Group – OMG

The Object Management Group is a non-profit consor-
tium created in 1989 with the purpose of promoting the-
ory and practice of object technology in distributed com-
puting systems. In particular, it aims to reduce the com-
plexity, lower the costs, and hasten the introduction of
new software applications. Originally formed by 13 com-
panies, OMG membership grew to over 500 software
vendors, developers and users.

OMG realizes its goals through creating standards which
allow interoperability and portability of distributed object
oriented applications. They do not produce software or
Implementation guidelines; only specifications which are
put together using ideas of OMG members who respond
to Requests For Information (RFI) and Requests For Pro-
posals (RFP). The strength of this approach comes from
the fact that most of the major software companies inter-
ested in distributed object oriented development are
among OMG members. [Keahey 1998]

3.4.1.2 The Object Management Architecture – OMA
OMA is OMG's high level vision of a complete distributed envi-
ronment. It consists of four components that can be roughly di-
vided into two parts:

• System-oriented components

• Object Request Brokers

• Object Services

• Application-oriented components

• Application Objects

• Common Facilities

The Object Request Broker is the foundation of OMA and man-
ages all communication between its other components. It allows
objects to interact in a heterogeneous, distributed environment, in-
dependent of the platforms on which these objects reside and tech-
niques used to implement them. In performing its task it relies on
Object Services which are responsible for general object manage-

32

ment such as creating objects, access control, keeping track of re-
located objects, etc. Common Facilities and Application Objects
are the components closest to the end-user, and in their functions
they invoke services of the system components.

3.4.1.3 The Common Object Request Broker – CORBA
CORBA is a specification of a system that provides
interoperability between objects in a heterogeneous, distributed
environment in a way transparent to the programmer. Its design is
based on OMG Object Model. In this model clients request serv-
ices from objects – also called servers – through a well defined in-
terface, specified in OMG IDL – Interface Definition Language.
(Figure 1).

Figure 1.
The calling client reaches the object implementation via the

Object Request Broker. [OMG 1998]

The request is an event that carries information including the ob-
ject reference, the name of the operation and arguments, if any.
The object reference is a unique identifier. [OMG 1998], [OMG
1999]

3.4.2 Microsoft and DCOM
Microsoft is a member of OMG, but they still have their own
model of distributed computing – DCOM:

The Distributed Component Object Model (DCOM) is a
protocol that enables software components to communi-
cate directly over a network in a reliable, secure, and effi-
cient manner. Previously called "Network OLE," DCOM

33

is designed for use across multiple network transports, in-
cluding Internet protocols such as HTTP. DCOM is based
on the Open Software Foundation's DCE-RPC spec and
will work with both Java applets and ActiveX® compo-
nents through its use of the Component Object Model
(COM). For example, a developer could use Java to build
a Web browser applet that calculates the value of a port-
folio of securities, using DCOM to communicate stock
values to the applet in real time over the Internet. [Micro-
soft 1999]

3.4.3 Java RMI and Serialization
Remote method invocation means calling a method in a remote
object. Sun Microsystems, the creator of the Java programming
language, calls their Java-to-Java distributed computing technol-
ogy RMI - Remote Method Invocation. We should thus be aware
of some potential confusion about this term. When we hear it today
it mostly refers to Java technology, not remote method invocation
in general.

Remote Method Invocation (RMI) enables the program-
mer to create distributed Java-to-Java applications, in
which the methods of remote Java objects can be invoked
from other Java virtual machines, possibly on different
hosts. A Java program can make a call on a remote object
once it obtains a reference to the remote object, either by
looking up the remote object in the bootstrap naming
service provided by RMI or by receiving the reference as
an argument or a return value. A client can call a remote
object in a server, and that server can also be a client of
other remote objects. RMI uses Object Serialization to
marshal and unmarshal parameters and does not truncate
types, supporting true object-oriented polymorphism.

Object Serialization extends the core Java Input/Output
classes with support for objects. Object Serialization sup-
ports the encoding of objects and the objects reachable
from them into a stream of bytes and it supports the com-
plementary reconstruction of the object graph from the
stream. Serialization is used for lightweight persistence
and for communication via sockets or Remote Method In-
vocation (RMI). The default encoding of objects protects
private and transient data, and supports the evolution of
the classes. A class may implement its own external en-

34

coding and is then solely responsible for the external for-
mat. [Sun 1999]

Sun has declared their intention to make Java RMI CORBA-
compliant, including support for OMG's new IIOP – Internet Inter
Orb Protocol.

3.4.4 Reaching the Holy Grail: Oz – Mozart
SICS – the Swedish Institute of Computer Science – in Stockholm,
Sweden, has developed a programming language called OZ and a
programming system called Mozart that implements Oz. The Mo-
zart implementation was done in co-operation with researchers
from Programming Systems Lab, DFKI, Universität des Saarlan-
des, and Collaborative Research Center in Germany and Départe-
ment d´Ingénierie Informatique at Université catholique de Lou-
vain, Belgium.

The Mozart system provides state-of-the-art support in
two areas: open distributed computing and constraint-
based inference. Mozart implements Oz, a concurrent
object-oriented language with dataflow synchronization.
Oz combines concurrent and distributed programming
with logical constraint-based inference, making it a
unique choice for developing multi-agent systems. Mozart
is an ideal platform for both general-purpose distributed
applications as well as for hard problems requiring so-
phisticated optimization and inferencing abilities. We
have developed applications in scheduling and time-
tabling, in placement and configuration, in natural lan-
guage and knowledge representation, multi-agent systems
and sophisticated collaborative tools. [Mozart 1999]

The Oz/Mozart system provides total location transparency for all
computational objects. Oz is an interpreted language and all man-
agement of locality, sharing of variables, objects etc. is handled by
the interpreters*, the Mozart VMs. Thus Oz/Mozart acts like a kind
of middleware that presents an API with a convenient level of ab-
straction, relieved from OS-specific details. From the Introduction
to the on-line tutorial:

The Mozart system supports network-transparent distri-
bution of Oz computations. Multiple Oz sites can connect
together and automatically behave like a single Oz com-
putation, sharing variables, objects, classes, and proce-
dures. Sites disconnect automatically when references
between entities on different sites cease to exist.

35

In a distributed environment Oz provides language secu-
rity. That is, all language entities are created and passed
explicitly. An application cannot forge references nor ac-
cess references that have not been explicitly given to it.
The underlying representation of the language entities is
inaccessible to the programmer. This is a consequence of
having an abstract store and lexical scoping. Along with
first-class procedures, these concepts are essential to im-
plement a capability-based security policy, which is im-
portant in open distributed computing.

As the system is completely location transparent, mobility is triv-
ial. From what we have learned from people that have used Oz, it
is a fantastic platform for distributed computing, but its learning
curve is somewhat steep. The system is available for downloading
in UNIX, Windows95/NT and Linux versions at Mozart, [1999:b].

36

4 Mobile Agent Systems

4.1 General Aspects

4.1.1 Definition
The term “mobile agent” as used by the providers of systems like
ObjectSpace Voyager and IBM Aglets refers to a computer pro-
gram or a piece of computer code that can

• start executing on one host and during that execution and as a
part of that execution,

• suspend its execution,

• conserve its state, possibly including program counter and CPU
registers,

• move itself (with the help of the underlying infrastructure) to
another host,

• unpack itself,

• restore its state and

• resume execution on the new host.

We must be aware that this definition refers only to the mobility of
the code, not to the “agency” of the software in the sense of our
definition of section 2.5.1.5. Platforms like ObjectSpace Voyager
and IBM Aglets make it easy to build distributed applications in
the “Mobile Agent Paradigm”, but the intelligence and thus most
of the “autonomy” must be provided by the developers.

37

4.1.2 Basic Model
The basic concepts concerning mobility in the model of General
Magic’s Telescript Language are place and agent. Both concepts
represent individuals or organizations in the physical world. The
places are stationary and agents are mobile or stationary. Mobile
agents can move from one place to another. Agents can communi-
cate with other agents with messages regardless of location, pro-
vided the place supports the communication. [Mchacko 1999].

Most mobile agent systems have abided close to this model.

4.1.3 Security
Mobile agent security has two aspects, protection of the hosts with
the agent execution environment from attacks from malignant
agents and the protection of the mobile agents themselves from at-
tacks from other agents and from the hosts on which they execute.

4.1.3.1 Protecting Hosts
There are several models when it comes to protecting hosts from
malignant mobile code.

The Sandbox model, where the idea is to contain the mobile code
in such a way that it cannot cause any damage to the executing en-
vironment. This usually involves restricting access to file system
and limiting the ability to open network connections. The most
widespread implementation of a sandbox is the Java interpreter in-
side Internet browsers.

Code Signing, where the clients manage a list of entities they trust.
When a mobile executable is received, the client verifies that it was
signed by an entity on the list. If so, then it is run, most often with
all of the user’s privileges.

Hybrids: Sandboxes and Signatures, where a combination of
Sandbox and Code Signing is used. Cf. the following section on
Java.

Firewalling, where you decide whether or not to let the code run
on your hosts when it enters your domain. Commercial solutions
exist, for example Finjan Software and Security 7. This approach is
seriously limited. The halting problem states that there a general
algorithm does not exist that can predict the behavior of an arbi-
trary program. [Rubin and Geer 1998]

38

4.1.3.2 Protecting Agents
Protecting agents from hosts is in principle very difficult. The host
has full access to the code and can reverse-engineer it if desired.
Using encryption can solve some security problems, but when a
mobile agent for example has to compare prices on an untrusted
host the host can see which price is lowest even if it cannot see
who provides it. One way of achieving some privacy is to keep a
resident agent on a smart card, installed on the foreign host. Data
can be carried in encrypted form and all computation requiring pri-
vacy can be done onboard the smart card. That is almost like hav-
ing your own host in a remote location. In a business-to-consumer
situation for instance, this is normally not possible.

4.1.4 Persistence
Most agent platforms provide persistent storage of their agents.
Otherwise server crashes would end the autonomy of the individ-
ual agents. The underlying system should be able to store the agent
with its state when the agent is not interacting with any other agent
or with the execution environment and bring the agent “back to
life” when necessary.

4.1.5 Advantages
Many applications where mobile agents are a good, convenient
solution can readily be implemented using well-known techniques
as RPC or remote method invocation (basically synchronous com-
munication) or message passing (basically asynchronous commu-
nication). Several advantages with mobile agents however, make
them a preferable foundation for distributed systems.

• They reduce network load: Mobile agents consume less net-
work resources by moving the computation to the data rather
than the data to the computation. In traditional distributed sys-
tems many interactions between distant machines are often
needed to accomplish a certain task, especially when security is
an issue. With mobile agents it is possible to package a conver-
sation and dispatch it to a distant host where communication
can take place locally. While it is true that lack of bandwidth is
technically no problem, there will always be situations where
minimization of use of bandwidth is desired.

• They overcome network latency: In a real-time system like
an industrial robot you can use mobile agents to push instruc-
tions on to the robot. To use communication on a local network
could well be too slow in a time-critical application.

39

• They make disconnected operation possible: Mobile agents
do not require a continuous connection between machines. This
gives higher fault tolerance and it gives the end-user access to
the full computational resources of his/hers machine after
launching the mobile agent.

• They can give support for weak clients: A weak host (slow
CPU, low bandwidth connection) gets good help from being
able to package a computation or network interaction in a mo-
bile agent.

• They can encapsulate protocols: Mobile agents make it easy
to maintain a distributed system. If you need to alter an imple-
mentation you can simply call back the old agents and launch
new ones.

• They facilitate hardware maintenance: When a server needs
to be taken down all agents can be warned in a similar way and
then decide on their own if they want to go somewhere else,
get stored locally or die.

• They offer possibilities for customization: Mobile agents al-
low clients and servers to extend each other's functionality by
programming each other.

• They offer a convenient programming paradigm: Mobile
agents hide the communication channels but not the location of
the computation. Once the mobile agent servers are in place
across the network, it is easy to build sophisticated distributed
systems.

[Chess, Harrison and Kershenbaum 1995], [Dartmouth 1997],
[Lange and Oshima 1998], [Lange and Oshima 1999].

4.1.6 Critical Aspects
Regardless of how a mobile agent system is implemented there are
some issues that have to be dealt with:

• The execution environment has to be standardized. This is
no more remarkable than that you have to agree on a protocol
in a distributed system, but it has to be remembered when de-
signing an “open system” to which you want to attract many
players. In some cases it may be easier to use stationary agents
and message passing only.

• Security. As already pointed out, you have to protect both your
host and your agents. Protecting hosts is most immediately ap-
parent, but protection of agents seems to the most difficult in

40

the long run – it is in principle impossible for an agent to keep
its computations concealed from the executing host.

For more on mobile agent security, cf. for example Cheng, [1997],
for more on security in Java-based systems, cf. section 4.2.2.

4.2 Existing Mobile
Agent Systems
In this section we have compiled some interesting systems for mo-
bile agents. For additional information, cf. for example Banks,
[1997] and W3C [1996].

4.2.1 Non Java Systems

4.2.1.1 General Magic - Telescript
The company General Magic claims they invented mobile agent
technology. They developed an interpreted object-oriented lan-
guage called Telescript to implement mobile agents. Wooldridge
and Jennings acknowledge Telescript to be “…perhaps the first
commercial agent language.” [Wooldridge and Jennings 1994].

The model of Telescript builds on the concepts agent and place.
Places are virtual locations where agents can meet and interact.
The focus when Telescript was developed obviously was Elec-
tronic Commerce. The idea was that agents representing vendors
and consumers could meet in an electronic market-place and per-
form spontaneous electronic commerce. The Telescript agents
could carry a virtual currency called Teleclicks.

A network equipped for mobile agents makes possible an
electronic marketplace in which the agents of providers
and consumers of goods and services can find and interact
with each other. New forms of electronic commerce and
community will result. [Mchacko 1999].

Around 1996 General Magic started to reimplement their mobile
agent technology in Java under the name Odyssey. General Magic
does not provide information on Telescript. The Telescript Lan-
guage Reference v.1.0 is available at Mchacko [1999]. [Gardner
1996], [Tham and Friedman 1996], [White 1996], [Moore 1998],
[Jackson], [Agent Society 1997:a], [Agent Society 1997:b], [Agent
Society 1998].

41

4.2.1.2 Agent Tcl
Dartmouth Collage has (or possibly had) a project on mobile
agents called Agent Tcl with their own programming language,
Tcl*. It has extensive navigation and communication services, se-
curity mechanisms, and debugging and tracking tools. The agents
have the ability to migrate at any point in their execution taking
their entire state with them to their new location. [Dartmouth
1997], [Dartmouth 1998]

4.2.1.3 Ara
University of Kaiserslautern, Germany, has also used Tcl for their
mobile-agents project. [Kaiserslautern 1997]

4.2.1.4 Tacoma
The mobile agent project of University of Tromsø, Tacoma,
(Tromsø And Cornell Moving Agents) focuses on operating sys-
tem support for agents and how agents can be used to solve prob-
lems traditionally addressed by other distributed computing para-
digms, e.g. the client/server model. The latest version of Tacoma,
TACOMA Version 1.2 is based on UNIX and TCP. The system
supports agents written in a variety of programming languages (C,
Tcl/Tk, Perl, Python, and Scheme). TACOMA 1.2 is implemented
in C. [Tacoma 1999], [Lange and Oshima 1998]

4.2.2 Java Systems
The advent of Java – The Language of the Internet – has brought
about an even bigger interest in mobile agents. There are a number
of Java platforms for mobile agents available. All of them provide
a basic infrastructure for mobility and messaging between agents,
some of them also include more advanced functionality. The
“higher” functionality of autonomous or intelligent agents is up to
the user of the platform to provide.

We have taken a closer look at two of the Java platforms, Ob-
jectSpace Voyager and IBM Aglets. A list of other systems is pre-
sented below with less or nothing more than the information pro-
vided by the manufacturers.

4.2.2.1 Java Advantages
Java has some features that make it a convenient platform for se-
cure and robust mobile agent systems.

• Platform independence: The Java Virtual Machine, JVM,
provides everything needed to build an engine for places as
well as mobile agents.

42

• Security: Java is designed for the Internet and many security
issues were taken in consideration when designing the lan-
guage. For a discussion on Java and security, cf. section
4.4.2.2.

• Sockets: It is easy to set up a TCP/IP connection in Java. Two
classes are involved, Socket and ServerSocket. Communication
over such a connection is as simple as file I/O.

• Dynamic class loading: The JVM can define and load classes
at runtime. A protective namespace can be provided for each
agent, which therefore can execute safely and independently of
each other. Classes can be loaded via the network.

• Reflection: With reflection, Java programs can obtain infor-
mation about the fields, methods and constructors of loaded
classes in order to be able to operate on the instance objects of
these classes, all within security restrictions. Thus agents can
be smart about themselves and other agents.

• Serialization: Serialization in Java is a convenient way to send
objects from host to host. When serializing an object, all other
objects reachable from it are serialized as well. Thus it is pos-
sible to restore the entire graph at a later time. This feature is
used for migrating as well as for persistent storage.

• Threads: Threads are “lightweight” processes that can coexist
within the same JVM instance. Threads make possible the in-
dependent execution of several agents within the same place.
Java also has a number of synchronization primitives that
makes agent interaction easier.

• Low learning curve: Most young programmers of today know
Java. Not having to learn a new language gives shorter time-to-
market.

[Lange and Oshima 1998], [Ethington 1998]

4.2.2.2 Java Security
Java was designed with security in mind.

• It is impossible to do pointer arithmetic and thus impossible to
overwrite data in the way you can in C or C++.

• Typecasting is restricted.

• Basic semantics of the language cannot be violated even by
tampered code.

43

• JDK 1.2 uses a sandbox/code signing hybrid security approach
where all classes – local, remote, signed or unsigned – are
subject to access control decisions. A security policy defines
the access each piece of code has to resources on the client.
Signed code can run on different privileges based on the key
used.

• The class loader converts remote bytecode into data structures
representing Java classes. Any class loaded from the network
requires an associated class loader that is a subtype of the
Classloader class. This means that the only way to add remote
classes to a machine’s local class hierarchy is via the class
loader.

• The Verifier performs static checking on the remote code be-
fore it is loaded. It checks that the remote code

• Is valid virtual machine code.

• Does not overflow or underflow the operand stack.

• Does not use registers improperly.

• Does not convert data types illegally.

These checks attempt to verify that remote code cannot forge
pointers or access arbitrary memory locations. This is impor-
tant because if an agent or applet could access memory in an
unrestricted fashion, it could run native machine code on the
client – an ultimate hacker goal and the definition of disaster.

• The Classloader classifies operations as safe or potentially
harmful. Safe operations are always allowed, but potentially
harmful ones cause an exception and defer a decision to the se-
curity manager. In effect, the Security Manager classes repre-
sent a security policy.

[Lange and Oshima 1998], [Rubin and Geer 1998].

4.2.2.3 IBM Aglets
In the taxonomic tradition of applets and servlets, IBM has created
the Aglets platform. It provides agent administration and transpor-
tation infrastructure and all the baseclasses needed to build mobile
agent applications. [IBM 1998].

4.2.2.4 General Magic Odyssey
General Magic claims they invented mobile agent technology (cf.
section 4.2.1 and 4.4.1.1). First implemented in their own language
Telescript, General magic has now reimplemented their platform in
Java under the name of Odyssey. The Odyssey class library pro-

44

vides everything needed to build a mobile agent system. [General
Magic 1998:a]

4.2.2.5 Mitsubishi Concordia
American Mitsubishi has built a mobile agent system with sophis-
ticated security and messaging capabilities. [Mitsubishi 1999]

4.2.2.6 ObjectSpace Voyager
The Voyager system of Dallas-based ObjectSpace is a strong can-
didate for a general platform for distributed computing in Java. A
closer look at Voyager is presented in section 5.5. [ObjectSpace
1998]

45

5 Mobile Agents Test
Case: DiSolver
Some researchers take the position that mobile agents is a solution
still looking for its problem. An application where mobile agents is
an adequate technique would be one where moving a computation
from one machine to another is the essential part of the application.
We designed the DiSolver system for distributed problem solving
for two reasons

• To give an example where mobile agents solve a problem,

• To have a test case for comparing the two mobile agents plat-
forms ObjectSpace Voyager and IBM Aglets.

The source code of the DiSolver implementations on ObjectSpace
Voyager and IBM Aglets can be found at
http://www.sisu.se/~jonas/ThesisSource.doc

5.1 DiSolver – Grassroots Par-
allel Computing
The basic idea with DiSolver is to use mobile agents to be able to
move a computation from one machine to another or automatically
distribute a CPU-intensive computation onto several machines.
The immediate advantage is twofold:

• The original machine is relieved of some load and can do other
work.

• The computation may be completed faster.

There are several different scenarios in which a DiSolver-like sys-
tem could be used. Most personal computer- and workstation
CPUs are idle most of the time. With a DiSolver-like infrastructure
for distributed computing you can let your spare CPU time out on
hire on an open market. If you have proper access to the priority-
queue, you can let programs from outside come in and execute
with a low priority, and you would hardly notice they were there.
Payments could be handled with a micropayment system.

46

The same infrastructure can be used to turn the whole of Internet
into a super parallel computer. Suppose you have a big computa-
tion that can be split up into two smaller ones, which in their turn
can be solved separately and whose solutions can be assembled to
the solution of the original problem. Put the problem splitting- and
assembling definitions into a general distributed problem-solver –
a DiSolver - give it a list of free CPUs and launch it on the net. In
due time, it comes back to you and delivers the result.

A corporation can use the same idea. Instead of buying expensive
supercomputers, big computations can be run on the in house
desktops, either at night when the employees are at home, or in the
background with low priority, all safely behind the corporate fire-
walls.

5.1.1 Splitting Problems and
Assembling Solutions
For the DiSolver to work in the simplest case we need a problem
that can be easily split up into two sub-problems which in their
turn can be solved separately. Furthermore we have to be able to
combine these two solutions to form the solution of the original
problem. We call an easily split problem. Far from all problems are
easily split. In some cases where an easy split is impossible it
might still be possible to construct a DiSolver-like system if prob-
lem instances can communicate. This is far more complicated to
generalize so we leave it out in this discussion. The problem used
in our test case is the simplest imaginable: addition of lists of inte-
gers.

5.2 DiSolver: Corporate
Version – Outline
In this section we describe the DiSolver system of distributed
computing set in the context of a company running easily split
computations on the in house desktops and workstations.

The system consists of the following parts:

• The mobile agent execution environment. In our test case
this would be the IBM Aglet Server or the Voyager server. The
mobile agent execution environment is installed on the ma-
chines comprised by the DiSolver system.

47

• CPU Brokering Managers. Stationary agents residing at the
agent servers of each host in the system. Keep lists of hosts
available to the system on which to distribute.

If someone wishes to perform a big computation and would like
other CPUs to help him out, he defines how one instance of a
problem shall be split up into two smaller ones, how these shall be
computed and finally how the sub-solutions shall be put together to
the actual solution of the original problem. The splitting factor
does not have to be two, even if that is the easiest to implement.

The definitions are put into a DiSolver agent together with the
problem instance to be solved. The DiSolver requests a list of pre-
sumably available CPUs from the local CPU Brokering Manager,
splits the problem-instance up into smaller ones, puts them into
new instances of DiSolvers and sends them off to the new hosts.

Once there a child DiSolver looks at her problem instance and de-
cides whether it is small enough to be computed locally. If it is, she
does so and sends the result back to her parent to be assembled; if
not she repeats what her parent just did before her.

5.2.1 Central Algorithm
If smallEnough (problem)

solution = computeLocally (problem)
else
{

problemList = partition (problem)
solutionList = computeDistributed (problemList)
solution = assemble (solutionList)

};
return solution;

5.3 Design: System
In this section we present the design of the system

5.3.1 Environment
The Environment is the execution environment of the mobile
agents. It also comprises facilities for messaging between agents.

48

5.3.2 Abstract class Problem
The class Problem contains the problem instance at hand. The es-
sentials are the abstract classes that have to be implemented by the
user of the system. In our implementations addition of integers the
actual problem is put in a subclass to Problem, in our case in Ad-
dition.

5.3.2.1 Attributes
No Attributes.

5.3.2.2 Operations
Problem ()

Constructor of class Problem.

Solution: computeLocally () (abstract)
computeLocally computes the solution of the problem in-
stance of this Problem.

Problem: partition () (abstract)
partition splits up the problem instance of this problem into
two by returning a Problem-object containing “half the
problem instance” of this problem and leaving the other
half in this problem.

Integer: size () (abstract)
size returns the size of the problem instance as an integer.

Boolean: tooBig () (abstract)
tooBig returns true if the problem instance of this Problem
is too big to be computed locally.

5.3.3 Abstract class Solution
The class Solution carries solutions to the problem at hand.

5.3.3.1 Attributes
No attributes.

5.3.3.2 Operations
assemble (Solution s) (abstract)

assemble assembles the solution in this Solution with the
solution it takes as an argument.

display () (abstract)
Display writes the solution to std out.

49

5.3.4 DiSolver
The class DiSolver is the mobile agent of the system. The two im-
plementations do not follow this design exactly, due to specifics of
the platforms.

5.3.4.1 Attributes
Vector: problemList

Storage for Problems during partition.

Vector: solutionList
Storage for Solutions that has arrived from children

DiSolvers.

Vector: nodeList
List of available nodes.

Boolean: isTop
isTop is true if this is the root DiSolver.

DiSolver: parent
Parent is the parent of this DiSolver.

5.3.4.2 Operations
Public:

run (Problem p)
The main method that performs all the work of this
DiSolver instance: solves the problem and returns the solu-
tion to the caller.

receiveSolution (Solution s, Integer index)
receiveSolution stores the solutions delivered by children to
this DiSolver and assembles them when all have arrived.
The index refers to where in the solutionList s is to be
placed.

Private:

computeDistributed (problemList, nodeList, solutionList)
computeDistributed distributes the list of partitioned prob-
lems onto available CPUs.

partition (problem p)
Splits a problem instance up in two (or more) smaller
problem instances by calling the partition operation of the
class Problem.

Solution: assemble (solution s1, solution s2)
Assembles two (or more) solutions into one big one by
calling the assemble operation of class Solution.

50

handleSolution (Solution s)
Delivers the computed solution to the parent.

5.4 Design: Addition of Integers
The application we chose for testing the DiSolver system is the
simplest imaginable: Addition of integers. It involves two classes,
Addition and Sum, that inherits from Problem and Solution re-
spectively.

5.4.1 Addition (extension of Problem)
Addition holds a problem instance of addition of integers as a list
of integers.

5.4.1.1 Attributes
Vector v

Holds a list of Integers.

5.4.1.2 Operations
All the abstract operations in Problem are implemented in Addi-
tion.

Solution: computeLocally ()
computeLocally adds the integers in v and returns the result
as on object of class Sum.

Problem: partition ()
partition splits up v in half, leaves one half in this Addition
and puts the other half in a new instance of Addition and
returns it as a Problem.

Integer: size ()
size returns the size of v.

Boolean: tooBig ()
tooBig returns true if the size of v is bigger than four.

5.4.2 Sum (extension of Solution)
The class Solution carries solutions to the problem at hand.

5.4.2.1 Attributes
Integer val

Holds the value of this Sum.

51

5.4.2.2 Operations
assemble (Solution s)

assemble adds the val of s with the val of this Sum and as-
sign it to this val.

display ()
display writes val to std out.

5.5 Evaluation of two Java
Mobile Agent Platforms
We have taken a closer look at two Java-based platforms for mo-
bile agents, the IBM Aglets system, v.1.1b and ObjectSpace Voy-
ager, v.2.0, by implementing the DiSolver system for “grassroots
parallel computing”, a test-case application for mobile agents.

5.5.1 Similarities
Both platforms are written in 100% pure Java and consist of class
libraries plus documentation. The architectural solutions are simi-
lar. An agent server is the central part in both systems. The overall
model of both is similar to the one originally presented by
Telescript. Agents inhabit places. Agents can migrate between
places and send messages to each other. Messaging is primarily
asynchronous. Agents are not accessed directly but through
“virtual references” (Voyager) or “proxies” (Aglets). This supports
location transparency and security and makes it possible to forward
messages automatically when an agent moves from one place to
another.

5.5.2 IBM Aglets v.1.1 Beta
Agents in IBM Aglets are subclassed from the Aglet class. The
aglet class has a number of abstract functions that the agent envi-
ronment calls to control what code is executed at major events of
the agents’ life cycle. These major events are Creation (creation or
cloning), Disposal, Mobility (dispatch and retract) and Persistence
(deactivate and activate). The functions connected to these events
are onCreation (), onCloning (), onCloned (), onDisposal (), on-
Dispatching (), onArrival (). These functions are called by the en-
vironment if the agent calls its constructor, Clone () (onCloned () is
called when the new identical agent is brought to life), dispose ()
and dispatch () respectively. onArrival () is called by the environ-
ment when an agent has arrived on a new location. Event listeners

52

have to be added to the agent by the programmer in order to regis-
ter the right function with the environment.

This plethora of functions are easier to manage than it may seem in
this presentation, but never the less, it makes programming with
Aglets quite different from local Java programming.

Incoming messages are all handled by the handleMessage (Mes-
sage m) method that has to unpack the message to decide what lo-
cal function to call with the possibly attached arguments, cp. the
server stub in section 3.3 on remote procedure calls.

In the Aglet 1.1 beta implementation that we tested the agents are
created and managed through an application program called Tahiti.
It works as an agent server and provides a graphical user interface
for monitoring agents migration and so forth.

Good documentation on IBM Aglets is provided in Lange and
Oshima [1998]. This source also provides material on mobile
agents in general and particularly on mobile agents in Java. [IBM
1998], [Lange and Oshima 1998].

5.5.2.1 DiSolver Implementation
We could not access the in other ways than through the Tahiti
server. To define the problem instance and launch the root
DiSolver we could have used a special stationary agent. That
would have given a cleaner code in class DiSolver. Instead we put
the setProblem inside DiSolver.

The implementation always delivered the correct result, but did not
work cleanly. Exceptions were thrown that we were unable to track
down and different runs of the program did not result in exactly the
same behavior in agent migration. The code is included in appen-
dix.

5.5.3 ObjectSpace Voyager v.2.0
Voyager is a general platform for distributed applications in Java.

Complete bi-directional Corba integration. ObjectSpace pro-
vides an extra Java package that turns Voyager into a Corba 2 cli-
ent or server. Thus a Voyager object can communicate with any
Voyager or Corba server and vice versa.

Any class can be remote enabled without modifying its code. The
user need not bother about location of the .class-file as long as it is
in the classpath of the Voyager server.

Messages can be sent to remote objects using regular Java syn-
tax. Unlike in Aglets, the agent environment does not call any
mandatory functions at certain stages of the agent lifecycle. This

53

also makes programming in Voyager more like regular Java pro-
gramming.

Scalable group communication. Voyager has a group communi-
cation facility based on spaces and subspaces. A space can consist
of one or more subspaces. When a message is sent to one of the
subspaces in a given space it is first replicated and sent to all other
subspaces in that space before being delivered to the members of
the local subspace. This results in rapid parallel distribution. This
group communication functionality scales easily.

Support for key Java RMI APIs

Voyager v.2.0 was given away without restrictions. Current ver-
sions available for download online are allowed for internal use
only.

The current version (April 1999) is v. 2.0.2. ObjectSpace have de-
clared support for DCOM in second quarter of 1999.

ObjectSpace provide excellent documentation online.

[ObjectSpace 1999]

5.5.3.1 DiSolver implementation
We implemented DiSolver as a Voyager agent and as an ordinary
remote enabled class. Voyager is easy to work with and executes
cleanly with no strange exceptions appearing. It requires a driver to
instantiate the root DiSolver. The driver also contains the defini-
tion of the problem to be solved. The agent version of the code is
included in appendix.

5.5.4 Comparison
When comparing the two platforms Voyager comes out as the su-
perior. It is cleaner in design, more location transparent, executes
cleaner, has better documentation and better interoperability with
other systems for distributed computing. The ObjectSpace web site
also proudly presents a line of awards and good reviews for the
Voyager platform. We have not tested security issues.

54

6 Speech-Act Agents

6.1 Introduction
The intelligent agents that Wooldridge and Jennings describe in
their soft notion of agency bear a strong heritage from the AI tra-
dition in general and from the ARPA Knowledge Sharing Effort
(KSE) in particular. Genesereth and Ketchpel [1994] give this
definition of this type of software agent:

The criterion for agenthood is a behavioral one. An entity
is a software agent if and only if it communicates cor-
rectly in an agent communication language like ACL.
This means that the entity must be able to read and write
ACL messages, and it means that the entity must abide by
the behavioral constraints implicit in the meanings of
those messages.

[Genesereth and Ketchpel 1994]

The ACL (Agent Communication Language) mentioned in this
quote refers to the one developed in the ARPA Knowledge Sharing
Effort. This ACL implements a communication model based on
speech-act theory. Speech-act theory was first described by Austin,
see e.g. Austin [1962]. A speech-act-based language in this context
consists of on outer language describing performatives and an in-
ner language describing content. Performatives are describing the
intention of communicating the content. In an example from natu-
ral language a sentence like “I promise you a glass of beer” the
performative is “promise” and the content is “a glass of beer”,
while “I” is the sender and “you” the receiver. In order to make
this model of communication complete we also need ontologies
defining the semantics of the inner and outer languages, in this ex-
ample as to define what is meant by “promise” and “a glass of
beer” respectively. Gruber gives this short definition of ontology:

An ontology is a specification of a conceptualization.

In the context of knowledge sharing, I use the term ontol-
ogy to mean a specification of a conceptualization. That
is, an ontology is a description (like a formal specification

55

of a program) of the concepts and relationships that can
exist for an agent or a community of agents.

[Gruber 1999]

Note that the inner and outer languages of a speech-act based agent
communication language are not designed as programming lan-
guages. Speech-act based agents can be implemented in any high
level language. The Speech-act based ACL defines how the agents
communicate. We use the term speech-act agents (SA-agents) as a
common label for software agents in this tradition. Charles Petrie
of the Stanford University Center for Design Research (CDR),
comes close with his definition of his typed-message agents:

We follow Genesereth's approach, but differ somewhat
from the definition of this paper in light of our experience
with Next-Link agents and comparison with other
KQML-like agents, our Typed-Message Agents are de-
fined in terms of communities of agents. (We may also
call these "ACL Agents" after Genesereth.) The commu-
nity must exchange messages in order to accomplish a
task. They must use a shared message protocol, such as
KQML, in which the some of the message semantics are
typed and independent of the application. And semantics
of the message protocol necessitate that the transport
protocol not be only client/server but rather a peer-to-peer
protocol. An individual software module is not an agent at
all if it can communicate with the other candidate agents
with only a client/server protocol without degradation of
the collective task performance.

Petrie [1998]

The notion of autonomy has an additional meaning when applied
to speech-act agents:

…an agent may not constrain another agent to perform a
service unless the other agent has advertised its willing-
ness to accept such a request

[Genesereth and Ketchpel 1994]

This is different from the client/server model where the server de-
livers on every call.

SA-agents do not necessarily have to be very “intelligent”. They
merit for agency by abiding to the semantics of their communica-
tion and that language can be very small and limited. But what if
alleged SA-agents cheat? In a closed system where the program-
mer has full control over his/hers agents that of course is not a
problem. Lack of veracity in such a system is a bug (Cp. the theo-

56

dicy* problem in monotheism!). But in an open system as the
trading system described in section 7.3 there are always devils and
veracity is an issue. Trading agents committing to contracts and
later not fulfilling their obligations will cause problems. There has
been research in this area using results from game theory. As such
an open system looks pretty much as real life it seems likely that
some kind repression mechanisms towards cheating agents will
evolve. Cf. the discussion on “Prisoners Dilemma” in Dawkins
[1976].

6.2 Agent Communication
Languages

6.2.1 ARPA’s Knowledge Sharing Effort
The Knowledge Sharing Effort (KSE) was launched by ARPA* to
create infrastructure for distributed knowledge-based systems. The
idea was that a new knowledge-based system should be able to use
knowledge and reasoning capabilities of existing systems, thus
sharing knowledge, problem solving techniques and reasoning
services. This work resulted in the specifications for the Knowl-
edge, Query and Manipulation Language (KQML) and Knowledge
Interchange Format (KIF). The current status of KSE as a research
project is unclear. The referred web-site has not been updated since
1994. [Knowledge Sharing Effort 1994].

6.2.2 KQML and KIF
KQML, Knowledge Query and Manipulation Language, is an
Agent-Communication Language designed to support run-time
knowledge sharing among intelligent systems, or agents. It is both
a message format and a message-handling protocol. KQML com-
prises an extensible set of performatives that express the permissi-
ble operations that agents can perform on each other’s knowledge.
On this substrate higher-level agent interaction such as negotiating,
contracting, cooperative problem solving etc. can be built.

KQML has been used inside the scope of KSE and elsewhere to
prototypes and testbeds in concurrent engineering, intelligent de-
sign and intelligent planning and scheduling.

A KQML performative takes as one of its parameters an expres-
sion written in a content language, e.g. KIF.

57

6.2.2.1 Examples of performatives
• Tell

Indicates that the content statement of the tell performative is
in the knowledgebase of agent performing it.

• Deny
Indicates that the content of the deny performative is not true
to the sender

• Error (in-reply-to<expression>)
A performative of this type indicates that the sender cannot un-
derstand or considers to be illegal the message referenced by
the :in-reply-to parameter.

[UMBC 1993]

Knowledge Interchange Format (KIF) was developed as the con-
tent language of the ARPA KSE ACL. A speech-act expressed as
a KQML performative takes a KIF as one of its parameters. KIF is
a language designed for use in the interchange of knowledge
among disparate computer systems (created by different program-
mers, at different times, in different languages, and so forth).

KIF is a prefix version of first order predicate logic with exten-
sions in order to enhance its expressiveness. The following KIF
expression state that chip1 is larger than chip2:

(> (* (width chip1) (length chip1)) (*(width chip2)
(length chip2)))

[Genesereth and Ketchpel 1994].

[Genesereth 1], [Genesereth and Ketchpel 1994], [UMBC 1999:b]

6.2.3 General and Reusable Ontologies
One aspect of ARPA KSE worth mentioning in relation to the dis-
cussion of agents in electronic commerce is the efforts to establish
consistent system of ontologies covering different problem do-
mains. Many ontologies have been successfully developed in dif-
ferent domains, but in order to make systems more generic it is de-
sirable that an ontology developed in one domain would also be
usable in another domain. But many times concepts are used dif-
ferently in different domains. In the same way it would be desir-
able to organize concepts in a hierarchical, tree-like fashion from
more abstract to more specified concepts in a way similar to how
classes are organized in an inheritance tree in object oriented
analysis and design. Both of these undertakings have proved much
more difficult than first expected, as described in Chandrasekaran,
Russ, MacGregor and Swartout [1999].

58

6.2.4 Fipa ACL
FIPA – Foundation for Intelligent Physical Agents – was formed in
1996 to support standardization mainly in inter agent communica-
tion. An overview of standardization work up till 1997, especially
the FIPA 1997 standard, is found in Dickinson [1997]. The work in
FIPA, including full specifications, is monitored at the FIPA web-
site, FIPA [1999]. Many links are broken.

6.2.4.1 The FIPA 1997 Standard
The FIPA 1997 Standard consists of two components:

• Normative technology references:

• Agent Communication Language.

• Agent Management.

• Agent/Software Integration.

• Informative reference applications. Dickinson mention four
reference applications:

• Personal Travel Assistance: Using agents to plan a trip, in-
cluding choosing itineraries, modes of transport, booking
tickets.

• Personal Assistant: Supporting regular activities in the of-
fice like diary management, email sorting and workflow.

• Audio/Video Entertainment and Broadcasting: Selecting
from available programs to support customers with hun-
dreds of TV- or other media channels.

• Network Provisioning and Management: Using agents to
provide dynamic virtual private networks (VPNs).

[Dickinson 1997]

FIPA ACL
The FIPA Agent Communication Language, (ACL) defines a mes-
sage passing language for textual messages. The standard does not
define the means for message transport since that is considered
platform dependent.

An ACL message can look like this:

(inform
 :sender buyer1
 :receiver hpl-auctioneer
 :content
 (price (bid lot07) 150)
 :in-reply-to round4

59

 :reply-with bid5
 :language sl
 :ontology hpl-auction
)

[Dickinson 1997]

Inform is a communicative act type, and as such define the princi-
pal intention of the message – to inform what this agent believes to
be true. Communicative acts are based on speech act theory. The
FIPA 97 contains twenty communicative act types. The rest of the
message consists of seven key-value pairs, most of which are self-
explanatory.

FIPA 97 specifies the semantics of ACL messages in Semantic
Language – SL, a logic system that includes a model for actions.
SL includes operators for belief, intention, having a goal and being
uncertain.

FIPA is working on its standard incrementally. Work has been
done during 1998 on the FIPA 1998 Standard, v.0.2 of which now
is available at FIPA [1999]. Mobility is mentioned in passing in the
1997 version of the standard, but is more elaborately treated in the
1998 version.

6.2.5 Discussion: ACLs, Standards
and Complexity
A draft specification of KQML, UMBC [1993] has more than forty
performatives. We have not been able to obtain later specifications,
but from what we understand the number of performatives has not
decreased. The FIPA ACL has twenty communicative act types,
the FIPA equivalent to performatives. KQML and KIF was de-
signed to make sharing of large knowledge bases possible and ex-
pressive power was required. The four reference applications of
FIPA reveal the ambition to achieve a general agents framework
applicable to widely different problem domains.

Both of these efforts seem to reveal that building general agent
systems involve great complexity. The industry or the research
community does not wait for the agent standardization work in
FIPA (and elsewhere) to complete but use smaller languages for
domain specific applications. De facto standards may or may not
evolve in these domains. Eriksson, Finne and Janson [1998:b] take
a similar position.

60

6.3 MAS – Multi Agent Systems
It follows from the definitions of both Genesereth and Ketchpel
[1994] and Petrie [1998] that SA-agent systems are multi agent
systems. At least one functional and downloadable Java package
supporting SA-agent systems is available, namely the JATLite
systems of Stanford University, see JATLite [1999].

6.3.1 Load balancing – Market
Oriented Programming
SA-agents are well suited for the type of optimization that has
come to be called market-oriented programming. The overall
model is a market striving for price/supply equilibrium. In this
section we discuss some applications. The Agent–based Market
Space of Eriksson and Finne is also related to this model.

6.3.1.1 Power Plants and NOx Emission
Gustavsson [1999] describes how agents can be used in load bal-
ancing between power plants. We illustrate the idea with a similar
example.

We presuppose a number of power plants producing electricity
from fossil fuel. Apart from electricity the plant also emit NOx in a
super linear relation to their power production, i.e. a 10% increase
of power results in more than 10% increase of NOx emission. The
relationship between load and emission may also be dependent on
the type of fuel currently being used. Load balancing between the
plants in order to minimize NOx emission can be performed in the
following way:

• Each plant is represented by an agent.

• The agents can state “I can produce one more kW and thereby
emit another M kg of NOx ”.

• A transaction means changing load from one plant to another.

• A transaction is done if the total emission of NOx is reduced.

• A call for possible transactions is issued every t seconds.

In this way the system converges to a state where NOx emission is
minimized while adjusting to different load of the entire system.
This example is obviously overly simplified. In reality there are
difficulties like local minima and deadlock situations, cp. Gus-
tavsson [1999] and Ygge [1998].

61

6.3.1.2 DiSolver as Load Balancing System
The DiSolver system described in section 5 can be extended into a
similar load balancing system. Presuppose a company with a num-
ber of desktop computers. The company runs heavy numerical
computations and produce reports on word processors running on
some of the desktops (the word processors are still managed by
human agents). With proper access to the priority cues of the
desktops, and provided that the computations are distributable, a
design of a multi agent system is possible where the total load of
the company is distributed onto the available machines so as to
optimize the efficiency of the company.

6.3.2 Glueware
SA-agents are well suited for glueware applications. SA-agent
code can be put as adapters in front of legacy code to make an old
application available to an agent-based communication system. Cp.
Genesereth and Ketchpel [1994].

62

7 Agents in Electronic
Commerce

7.1 Electronic Commerce
The term “electronic commerce”, e-commerce or EC for short, has
been established for a few years. It usually refers to business ac-
tivities carried out with the help of computers in general and com-
puter networks in particular. Talking business on the telephone is
normally not considered as electronic commerce, even though
telephones are electronic devices.

Specifically, EC refers to the transfer of business documents be-
tween computers, systems for integrated stock-keeping, automated
ordering, bookkeeping, invoicing etc. as well as to marketing and
sales with the aid of computers or computer networks.

Deploying computer networks involves many security issues. Sys-
tems for secure transmission of secret data as well as secure pay-
ment systems using different cryptological techniques have
emerged.

The WWW-explosion with the possibility to market and sell di-
rectly to the PC-owning public has boost the interest in EC enor-
mously. On the Internet and WWW there is also the possibility of
marketing and selling material affected by IPR* legislation. Thus
EC comprises questions for IPR as well as techniques for hindering
misuse of copyright material, such as watermarking* of text, im-
ages and even computer program code. The possibility to provide
systems for “pay as you use” on the Internet have stirred an interest
in micropayment systems.

Implementations of EC extend over every possible field of soft-
ware engineering, from web design to knowledge based systems.
There has been a great interest in “agent technology” in the area of
EC, especially in the area of automated business activities from
advertising, via brokering to negotiating terms of contracts to pay-
ment, delivery and post sales services. In the following we look
specifically at software agents in the context of a business-to-
consumer model. Different kinds of agent technologies have also
been used for back office applications like information retrieval.

63

The Amalthaea info-mining system presented in section 7.4 is one
example.

7.2 Business-to-Consumer
In this section we examine some existing web-based solutions for
business-to-consumer marketplaces in the perspective of a six-
stage business model. Business-to-consumer electronic commerce
does not necessarily have to take place on the WWW. But it seems
likely that solutions where the web at least is a part will dominate
in the foreseeable future. For the public in general the WWW and
the Internet are one and the same.

7.2.1 A Business Model
In order to clarify the roles of agents in electronic commerce, we
use a business model. We use a slightly modified version of a
model sketched out in Maes, Guttman and Moukas, [1999], stem-
ming from consumer buying behavior (CBB) research. This model
does not cover all of (electronic) commerce but still serves our
purpose here as we concentrate our discussion on the business-to-
consumer and consumer-to-consumer domains. The model de-
scribes six stages of the business process:

• Need Identification. The buyer becomes aware of an unmet
need. This stage might include the buyer reading/watching ad-
vertisements, talking to friends etc.

• Product brokering. The outcome of this stage is a set of prod-
ucts that the buyer seriously considers buying, the considera-
tion set. It might include evaluation of product information
from producers, retailers and consumer organizations based on
the buyer’s own criteria.

• Merchant brokering. The outcome of this stage is the deci-
sion who to buy from. This combines the consideration set, in-
formation from and about retailers and criteria like price, war-
ranty, availability, delivery time and reputation.

• Negotiation. This stage considers the terms of the transaction.

• Purchase and delivery.

• Product service and evaluation. This stage involves post-
purchase product service, customer service and evaluation of
the overall experience of the product and related services.

64

These stages are often not distinct in real commerce. The business
process often alternates between two or more stages before moving
on to the next.

As we shall see, most systems are strongest in product and mer-
chant brokering. Some also negotiate price on behalf of the user.
Support for need identification, purchase and delivery or product
service and evaluation are normally weaker.

Most of the services discussed in the following are not, as far as we
can tell, agent-based in the sense of section 2.5.1.5. They are not
based on a speech-act-agent implementation. Some of them are,
however, agent-based in the sense that the user experiences a part
of the system as performing business actions on his behalf, as his
trusted representative, and in some cases that it does so in interac-
tion with other “agents” (in most cases, representing other ven-
dors). Thus they are agents in the sense of MW3 and MW4 as well
as agents possibly on the level of modeling and design and on the
user-interface level. And as we can see in figure 2, they are alleged
to be agent mediated by an authoritative source like Guttman,
Moux and Maes, [1998].

Figure 2.
Consumer buying behavior model

with alleged agent mediation.
[Guttman, Moux and Maes 1998]

Some of the services in the following sections apply to more stages
in the business model then the ones under which they are listed.

65

7.2.2 Need Identification
Some sites use user profiles to custom make each individual user’s
own version of pages from the site. Amazon.com and their Eyes
program is one example. [Guttman, Moux and Maes 1998]. Some
commercial sites send e-mail automatically to notify customers of
new products in areas in which they have expressed interest.

7.2.2.1 Firefly
Firefly claim that their products make it possible for consumers to
specify a user profile to a vendor while keeping his/her identity se-
cret. In an online demo, Firefly states the bookstore Barnes and
Noble as an example of a user of their products. When creating an
account on the Barnes and Noble home-site, however, we do not
get the impression that our preferences on books are in any way
withheld from Barnes and Noble. And furthermore, when loading
the Barnes and Noble home page after setting our profile, our pro-
file is in no way related to what books is presented on the page.
The role of Firefly products on the Barnes and Noble home-site is
unclear, as is the agency of the software. [Firefly 1999], [Barnes
and Noble 1999].

7.2.3 Product and Merchant Brokering
Quite a few systems support merchant brokering on the basis of
price comparison. There has been an interesting struggle going on
between BargainFinder-like web-sites and the vendors being dis-
played by those web-sites. A third of the online merchants ac-
cessed by BargainFinder blocked out its price requests. The reason
seems to be that they do not want to compete with price alone.
More advanced price-comparing software do their searches from
the client’s web-browsers so that their requests look just like any
customers’. To defeat this some merchants have put their price tags
in picture-formats like jpeg so that software cannot easily parse the
pages to find prices. [Maes, Guttman and Moukas 1999]. That will
eventually not stop price comparison, since it is not too hard to
train a neural net to map shapes to characters. Text-scanning soft-
ware is today an off-the-shelf product.

7.2.3.1 Passagen
Swedish Passagen give links to a limited number of retailers. The
system does no comparisons of prices. It thus gives a weak support
for stages two and three in the model. No agency can be detected
more than possibly on the interface level. [Passagen 1999]

66

7.2.3.2 Personalogic
The company Personalogic provides a web-based decision support
system for such diverse “products” as cars, pets, bicycles, holiday
trips, cities, collages and politicians. By clicking on links prefer-
ences can be stated and eventually a list of one or more options is
supplied. Maes, Guttman and Moukas, [1999] list it as an agent
system, but we do not discover much autonomy when using the
system as it takes a lot of direct manipulation - clicking on links -
to get to a final decision. The service possibly merits agency on the
interface level. Some indecisive consumers might find it useful
though. It took the author of this paper five minutes to find out that
his ideal pet would be a hermit crab.

When the product is specified, the system provides links to one or
more sellers of the product. Personalogic supports stage two and
three in the model. Personalogic has ads on each and every page.
[Personalogic 1999], [Maes, Guttman and Moukas 1999].

7.2.3.3 BargainFinder
BargainFinder was an experimental shopping agent for the WWW
developed by Andersen Consulting around 1995. It was a system
that compared prices in a number of different online CD-stores.
The interface towards each vendors web-site was custom made, so
it is not agents talking to agents that retrieves the information, but
the BargainFinder did work as an agent as it retrieved the informa-
tion on the behalf of the user, in the sense of MW3 or MW4c and
thus an agent on the interface level. Andersen Consulting does not
provide the BargainFinder on line, but a search-engine query on
“bargainfinder” returns many lookalikes.

Andersen Consulting has a new research project called Pocket
BargainFinder intended to work for more than CDs. Documenta-
tion is scarce. [Andersen Consulting 1999], [Maes, Guttman and
Moukas 1999].

7.2.3.4 Jango
Jango is an advanced version of BargainFinder. See jango.excite,
[1999] for one implementation. It can help to find the best offer on
a wide variety of consumer products as well as personal contacts,
careers, travels and more. Jango solves the “agent-blocking” issue
by having their requests originate from their customer’s web-
browsers. The interface between Jango and each and every site it
searches has in principle to be handcrafted individually even
though special software tools can be implemented.

Jango.excite, [1999] can also handle auctions. Any member can
put up an item for auction, stating opening and lowest price and
date for closing. Any member can place a bid on any auction item.

67

When time is up the affected parties are notified of the outcome of
the auction via e-mail. Purchase and delivery are up to the parties
themselves.

This seems fine as long as the parties can meet in the real world
and exchange money and goods. But what if you live in different
ends of the physical universe? It may sound risky to deliver goods
or money to perfect strangers. Excite has a nice way of increasing
the transparency of the virtual marketplace. Everyone that places
an item for auction is exposed for other members listing comments
on the seller. On the auction web pages these comments can be
seen next to the name of the seller. Comments usually go along the
lines of “Have done business with her before, she kept agree-
ments” or “She did not deliver”, “She did not respond on my e-
mail”.

Jango supports stages two, three and four in the model.

7.2.4 Negotiation
As already mentioned, Jango.excite also handles auctions. In this
section we look at some other online auction systems as well as
some that support agent enhanced negotiation in other formats.

7.2.4.1 OnSale
OnSale is an online auction house where you can click your way
through the site and see what items are for sale. You can enable a
“Bid Maker”, an agent that bids for you on an item up to your cho-
sen highest bid. OnSale also has some on-site search-tools. OnSale
has ads on every page. Most sellers on OnSale are established re-
tailers. There are also sales as fixed prices on the site. OnSale sup-
ports stages two, three and four of the model. [OnSale 1999]

7.2.4.2 eBay
eBay is an online auction house that focuses on the consumer-to-
consumer market. In eBay you also have on-site search tools to
help you find the item of your choice. You instruct your eBay
“proxy” (not agent!) about your highest bid, and the proxy handles
your bidding for you. The parties handle payment and exchange of
goods themselves. You can read the feedback other buyers have
given to a registered seller. The feedback can be positive or nega-
tive and is summed up in a feedback index. If it drops under minus
four the sellers’ account is closed automatically.

eBay has no ads on their pages. Viewing, bidding, and buying
items on eBay is free, while listing and selling items on eBay cost
money. eBay also supports stages two through four of our business
model. [eBay 1999].

68

7.2.4.3 AuctionBot of University of Michigan
AuctionBot is a research site at University of Michigan. It was in
bad shape when we tested it in March 1999. [AuctionBot 1999]

7.2.4.4 Bid2Day
The Swedish online auction house is very similar to OnSale. You
click your way to the product and place your bid. The system has
no support for agents in the bidding process, i.e. you have to
monitor the auction of your choice yourself and place a higher bid
if necessary. For some products they do support purchase and de-
livery. [Bid2Day 1999].

7.2.4.5 Amazon
Amazon launched an auction system similar to eBay in late march
1999. [Amazon 1999]

7.2.4.6 Kasbah and Market Maker
The Kasbah project of MIT media lab was an early example of an
agent-based consumer-to-consumer transaction system. It has now
been replaced by the Market Maker Testing Site. On Market
Maker you can browse the site to find interesting goods. The cate-
gories available are limited to Books, Music, Star Ships, Computer
Games and Translation Services. In each of these categories you
can specify values in a number of fields. For books these fields are
Cover Type, Genre, Title, Author(s), Edition, Course Number,
Condition and a free text Description. In the web interface you can
create agents that buy or sell items according to your specifica-
tions. You state the life span of your agent and its negotiation
strategy by choosing from three different time/price functions, cf.
figure 3. If you sell you let your agent start out on a high price and
decrease it to a lowest acceptable price according to the chosen
time/price function. Corresponding rising functions are available if
you buy.

Figure 3.
Different pricing strategies for the Market Maker selling agents.

(Source: MIT Media Lab)

69

The system supports stages two through four in the business
model. Market Maker has a feedback system called Better Busi-
ness Bureau similar to the feedback systems in OnSale and eBay,
giving support for stage six in the model.

We have as yet been unable to obtain information on the Market
Maker implementation. It seems probable that it is based on
speech-act agents.

The negotiation method of deciding on prices is a nice demonstra-
tion of the power of agents. It can be questioned, however, if it is a
sound way of doing business. We suggest that the auction format is
a better one for the seller. [Market Maker 1999], [MIT Media Lab,
Agents 1999]

7.2.4.7 Tete-à-Tete
The latest (?) agent enhanced marketplace experiment from the
MIT Media Lab is called Tete-à-Tete. Contrary to most other
transaction systems Tete-à-Tete does not only take price into con-
sideration, but the seller and buying agents negotiate over multiple
terms of a transaction, including warranties, delivery times, service
contracts, return polices, loan options and gift services. The par-
ticipants state the relative importance of the different aspects of a
deal. The system uses XML to describe the different proposals,
critiques and counterproposals. No online demos are available.
[Tete-à-Tete 1999]

7.2.5 Purchase and delivery
Normally purchase and delivery is not automated. But it is very
easy to click on a link on a web-site to confirm that you buy what
is in your chart like you do for example at Amazon.com.

7.2.5.1 Autogiro
In the midst of the WWW-hype it is nice to point out that most
banks have provided an automatic payment system in many years
now. In Sweden this service is called Autogiro. You can instruct
your bank to transfer a fixed amount to another account on a fixed
date every month.

7.2.6 Product service and evaluation
The feedback given on sellers in OnSale, eBay and Market Maker
is an evaluation of the transaction. Most commercial web-sites are
anxious to get feedback from their users on the quality of their
services.

70

7.3 A general open
Agent-based market
The open worldwide agent-based marketplace for business-to-
business, business-to-consumer and consumer-to-consumer trans-
actions has been a vision for some time. What would such a mar-
ketplace look like? How would it work?

7.3.1 SICS Market Space
Joakim Eriksson, Niklas Finne and Sverker Janson at SICS has de-
veloped one version of the open agent-based marketplace. The
following presentation is based on Eriksson and Finne [1997] and
Eriksson, Finne and Janson [1998:b]. We call their framework the
SICS MarketSpace, the term used in [1998:b]. It is based on
speech-act agents with an outer language, MIL, expressing how
you make business in the system and an inner content-language,
MIF, describing what you make business with. To make this
clearer, let us schematically describe a transaction in the system. In
this example there are three agents: a buyer, a merchant broker and
a seller. The merchant broker plays the role of the yellow pages in
the telephone directory. This example does not follow the syntax
of MIL and MIF but serves as an illustration of a possible transac-
tion.

71

A: Buyer B: Merchant Bro-
ker

C: Seller

Brokering

1.
A to B: (Tell (A buy
X))

2.
B to {C, F, H, J,
K}: (
Tell (A buy X))

Negotiation

3.
C to A: (
Offer (
 C sell X
 Price p)
MessageID m1)

4.
A to C: (
Regarding m1
Offer (
 A buy X
 Price p – 10)
MessageID m2)

5.
C to A: (
Regarding m2
Offer (
 C sell X
 Price p – 5)
MessageID m3)

6.
A to C: (
Regarding m3
Accept (
 A buy X
 Price p – 5)
Message ID m4)

7.
C to A: (
Regarding m4
Accept (
 C sell X
 Price p – 5)
Message ID m5)

Deal is closed

72

Brokers can keep lists of other brokers and register themselves as
brokers with other brokers. In that way you can get a distributed
network of brokers that buying and selling agents can utilize for
business.

7.3.1.1 Information Model and MIF – The Market Interest Format
The information model of SICS MarketSpace is based on the no-
tion that participants in the market want to close deals. The basic
unit of information is contract, a structured document. In order to
identify possible deals participants exchange interests that repre-
sent sets of contracts. Examples of interests that can be expressed
in sets of contracts are

• Buy thing cheaper than one dollar

• Buy pizza within one hour

• Buy books on software agents

Contracts are defined in terms of concepts (the record types that
are the building blocks of structured documents) which in their
turn are defined in ontologies (collections/modules of concept
definitions). Concepts are defined by URLs. Thus a concept identi-
fier http://somesite.dom/basic.ont#contract-3 refers to a definition
of “contract-3” in ontology http://somesite.dom/basic.ont. Con-
cepts serve as building blocks of structured documents. No seman-
tic information is attached to a definition other than the types of its
components. They are similar to records in programming lan-
guages.

An Expression Of Interest (EOI) is a representation of an interest
in some language. KIF (Cf. section 6.2.2) or the FIPA ACL SL
could have been possible candidates, but in their general form
these languages are too complex to be convenient for this applica-
tion and useful subsets of them are not defined. It is also possible
that W3C RDF/XML will be possible to use [W3C 1999]. At the
time of its writing the SICS MarketSpace proposal [1998] use a
simple custom designed language, the Market Interest Format,
MIF, to encode EOIs. MIF has Lisp-like syntax. Figure 4 show an
example of a MIF definition and a MIF expression:

(def car “trade-object”
 (color (instance “pathone-color”))

 …)

(instance “contract-3”
 (date (interval 1/1/98 6/30/98))
 (buyer (instance “person”

 (name “Joe Smith”)

73

 (agent-address…)))
 (goods (instance “car”
 (color (instance “red”)))))

Figure 4.
 A MIF definition and expression

The EOI in figure 4 states that Joe Smith is the buyer of a red car
in a contract signed between 1/1/98 and 6/30/98. This could be
used by Joe to advertise an interest or by his agent to handle in-
coming queries.

Values of the fields in EOIs can be expressed as fixed values as
well as intervals or lists as to make possible EOIs like “I want to
buy a red car for 200 – 300 dollars” or “I want to buy a Volvo 745
from 1998 or a SAAB 9000 from 1997”. As ontologies are hierar-
chically defined EOIs like “I want to buy Kitchen ware” can render
responses containing both dishwashers and refrigerators.

7.3.1.2 MIL – The Market Interaction Language
MIL is the outer language of the system. It is small but powerful
enough to implement a variety of different business interactions,
like

• Advertisement – promoting your own interest.

• Searching/Querying – to find matching interests.

• Negotiating – to come closer to a deal.

• Offering and accepting a deal settlement.

Figures 5 and 6 show the performatives in MIL and an example
message.

74

Message Meaning

Non-committing Following messages are not legally binding

Ask(A, B, EOI) Tell me an interest that matches EOI

Tell(A, B, EOI) This EOI is an interest

Negotiate(A, B, EOI) Give me an offer that matches EOI

Committing Following messages are legally binding

Offer(A, B, EOI) This signed EOI is an offer

Accept(A, B) This is an accepted (“positively” countersigned) offer

Decline(A, B) This is a declined (“negatively” countersigned) offer

Meta-messages Following messages are about earlier messages

Error(A, B) A informs B that A did not understand last message
from B

Figure 5.
Performatives of MIL – Market Interaction Language

(offer
:from “map://onesite.dom/agent1
:to “map://othersite.dom/agent2”
:in-reply-to i
:reply-with j
:language “MIF 1.0”
:content “<MIF expression>”

)

Figure 6.
An example MIL message.

The in-reply-to and reply-with fields contain simple identifiers to
enable agents to distinguish one chain of conversation from an-
other, cp. the “regarding” in the previous example.

We include another interaction example to show the flexibility of
the proposal.

• Ask (A, D, “Sell me a refrigerator)
A asks the directory service D for interests matching an interest
where A is the buyer and the good of type refrigerator.

75

• Tell (D, A, “B and C”)
The directory service replies with an interest where A is the
buyer and B and C are possible vendors.

• Negotiate (A, B, “Sell me a refrigerator”)
A asks B for an offer where A is the buyer of a refrigerator.

• Negotiate (A, C, “Sell me a refrigerator”)
A asks the same of C.

• Offer (B, A, “Electrolux 3117B for $350)
B gives A an offer (a signed interest) where B is the seller and
A is the buyer of a specific refrigerator at a price of $350.

• Offer (C, A, “Electrolux 3117B for $300)
C gives A the same offer but for the price of $300.

• Offer (A, B, “C sells for $300”)
A prefers B as a vendor and forwards C’s offer to A to B, sug-
gesting to B to match or improve on the offer.

• Offer (B, A, “Electrolux 3117B for $300)
B gives A an improved offer.

• Accept (A, B, “B’s last offer”)
A accepts B’s offer.

• Decline (A, C, “C’s offer”)
A declines C’s offer.

This transaction auction-like characteristics as A offer B to im-
prove on the offer. The authors of the proposal believe that a wide
range of auction types can be supported by MIL and MIF. The
SICS MarketSpace is symmetric, any participant can play the role
of seller, buyer, merchant broker etc.

7.3.1.3 Web Integration
SICS MarketSpace is integrated with the WWW. Figure 7 illus-
trates how a user gets access to his agent as it contacts a service
agent. The user has his ordinary web browser plus another smaller
window that holds the agent user interface. When the user en-
counters agent augmented services through the web the user agent
is informed and can be given the opportunity to assist the user. The
agents communicate with the Market Agent Protocol (map) which
is plain TCP/IP transmission of text messages.

[Eriksson and Finne 1997], [Eriksson, Finne and Janson 1998:b].

76

Figure 7.
SICS MarketSpace web integration

7.3.2 Mobile or Stationary?
There is an ongoing discussion whether an automated EC trading
system should be based on mobile or stationary agents. As we have
already pointed out, mobility and speech-act agency are independ-
ent properties. A mobile agent can reside on the end users private
PCs and thus be totally controlled by him or her. But most people
are not interested in administrating agents per se, they are inter-
ested in the services that an agent-based market can provide. It
seems likely that this market, if ever, will be brought to the public
as a service by an “agent service provider”. The business logic of
the open agent-based marketplace is discussed in section 7.6.

7.4 Info Mining – Amalthaea
Information mining refers to techniques for assisting in finding in-
formation a user might be interested in given what he or other us-
ers similar to him has been interested in earlier.

In the Amalthaea project of MIT Media Lab the Artificial Life
metaphor has been used to create an information-mining system
for the WWW. The basic “live” agents of the system are vectors of

Agent
User interface

Web Browser

User Agent

Service Agent

map

http

http

User

77

weighted keywords called Information Discovery Agents, IDs.
WWW-documents are internally represented by an ID where the
weight of each keyword represents the frequency of the word in
the document. Common words like the, and, it etc. are omitted.
Thus, web pages, or properties of web pages, are mapped onto
Rn*.

The user can also state an interest as an ID. A (logical) population
of such IDs is represented internally. The system can then look for
WWW documents with the same or similar ID. The similarity be-
tween IDs can be represented by the distance between their two
points in Rn. Small distance means big similarity.

Adaptive mechanisms are built into the system in the following
ways (simplified):

• The user gives feedback to the suggestions of the system. An
ID that participates in the delivery of a suggestion approved of
by the user is rewarded with credits. If the suggestion is not
approved of, the ID looses credits.

• The IDs do not suggest a document if it is not sufficiently con-
vinced that the suggestion will be approved of by the user.

• Some IDs “mutate” and “mate”. When they mutate the key-
word weights are changed randomly within certain constraints.
When a couple of IDs mate they exchange a part of themselves,
i.e. a section of the vector with keywords and weights.

• IDs multiply regularly according to the amount of credits they
have previously collected.

• When the overall level of ID-credits in the system goes down
evolution is boosted by rising the frequency of mutation and
mating. When the credit-level is high mutation and mating is
low, i.e. the system is stable.

If the user searches for documents in different subjects the system
can adapt by entertaining different populations of similar IDs. If an
interest of the user changes over time, the ID-population of that
interest changes their weights and keywords in an evolutionary
way. Successful IDs prevail and others perish. No commercial
companies have capitalized on the results of the Amalthaea project
or similar ideas, even if many companies have worked on code
from the project. [Moukas 1996].

7.4.1 Design Metaphor
Amalthaea seems to be an example of using the agent metaphor at
the design level. The model of the design is based on that a part of

78

the system behaves logically as a population of independent
autonomous “live” agents that act in their own interest in multi-
plying. That does not necessarily imply that every “individual
agent” needs to be implemented as an object by itself. It would be
more effective in this case to keep a list of the different “specie”
and append an integer to each of them representing the number of
individuals.

7.5 Legal Aspects

By Heléne Wallgren

The deployment of software-agent technology raises some inter-
esting legal issues. We will discuss questions concerning the legal
identity of agents, their legal capacity and issues concerning ac-
countability, evidence and privacy. Our objective is not to present
an exhaustive discussion on the legal aspects of agent technology,
nor to give answers to the legal questions that we raise.

Current technology makes it possible for software agents to make
agreements. One area where autonomous agents can be used is in
electronic commerce. A user can instruct a software agent to in-
vestigate prices for one or several products. The agent can be in-
structed to negotiate the price and, if the parties agree, come to an
agreement on purchase. To illustrate what kind of legal issues that
may arise we use an example.

John buys an agent program at Computers and Stuff Inc.
He installs it at home and decides to test it. John has heard
that agents can be used for online auctions and to buy and
sell goods on line. He decides he wants to go to Malta. He
gives his agent instructions to find the cheapest trip to
Malta. He does not want to pay more than SEK 3500 for a
week’s vacation. John is not a skillful operator of com-
puter software and does not understand that he instructs
the agent to look only for trips to Malta for exactly SEK
3500, no more, no less. The agent finds a travel agency,
SeaSide Travel, that provides a trip to Malta for exactly
3500 and John’s agent and the travel agency software
close an agreement. John receives his ticket by mail. A
few days later he discovers an ad in the newspaper. Sea-
Side Travel is now selling trips to Malta for SEK 2500.
John calls SeaSide and finds out that he could have

79

bought his trip at this lower price. But John has now paid
and SeaSide is unwilling give him a refund.

This example illustrates some legal issues related to agent technol-
ogy. The first question is whether the agent can make an agreement
that is legally binding for John. The next question is who is re-
sponsible for John’s misunderstanding about how to operate the
agent program. Should the retailer Computer and Stuff be obliged
to inform John about how to operate the software? It could be the
case that the program interprets John’s instructions erroneously. If
so, who is then responsible, John or the manufacturer of the soft-
ware? When John discovers that he could have saved SEK 1000,
he may want to claim there never was an agreement between him
and SeaSide. Who then bears the burden of proof?

This leads to the question of what legal status should be ascribed to
software agents. A legally binding agreement requires that the par-
ties are legal entities. As yet only natural and juridical persons are
legal entities. Furthermore the legal entities have to have legal ca-
pacity. This means that a natural person has to be of age and not be
legally incapacitated. Legal representatives of juridical persons
have legal capacity. This seems to imply that it is unlikely that a
software agent could be regarded as a legal entity with legal ca-
pacity to exercise rights and assume liabilities. It would lead to
complicated disputes in instances of disagreement.

Which legal status should be assigned to software agents? One way
would be to rank use of software agents for making binding
agreements with warrant constructs. A software agent could be
looked upon as a technical middleman corresponding to an
authorized attorney. In this case the user of the agent would not be
responsible for malfunction of the agent. This view is in conflict
with what we just said about software agents lacking the status of
legal entities with legal capacity able to exercise rights and to as-
sume liabilities. [Hultmark 1998].

Another way is to look upon software agents as immediate dispo-
sitions of their end users, i.e. the persons instructing the agents. A
software agent is a representative of someone who has given it in-
structions to obtain certain information or to do business in a cer-
tain way, but that does not make the agent any more responsible
than any other tool used by man. It would indeed lead to bizarre
situations if software agents were to be looked upon as legal enti-
ties. Can we put a software agent in jail if it commits a crime? Can
a software agent be obliged to pay for damages resulting from its
actions?

We have reached the conclusion that software agents should not be
considered legal entities. It then follows that they cannot be held

80

responsible for their actions. Who then is responsible? We can
consider four possibilities: 1) the creator of the software, 2) the re-
tailer of the software, 3) the one who provides the software for use
and 4) the end user of the software, i.e. the one who instructs the
agent. Often software manufacturers renounce any responsibility
for consequences resulting from use of their products. This is not
consistent with Swedish consumer-rights legislation as this legal
framework makes such renunciation illegal. Our purpose here is
not to solve the question of responsibility but to point out some le-
gal issues that remain to be solved.

If a dispute should occur between parties about an agreement
closed with the help of software agents regarding for example a
purchase, the parties need to be able to present proof that an
agreement has been closed. Swedish courts practice free submis-
sion of evidence, which means that in principle any type of evi-
dence is admissible in a trial. This implies that it should be possi-
ble to refer to any data as proof that a specific event with legal im-
plications has taken place. This infers that it is important to be able
to demonstrate that agent systems have a high level of security. Se-
curity systems might include logging, access control and encryp-
tion.

Agents do not only perform business. Some agents are designed to
“learn” a user’s behavior by registering what kind of information
or service he requests or what kind of goods he buys. The data that
thus occurs need to be protected. It is in some cases possible to es-
tablish the identity of a physical person from for example a user ID
or an email address. This raises the question of how to preserve the
individual’s privacy and integrity.

From the discussion above we can conclude that the jurisprudence
regarding software agents is at least unclear if not incomplete. In
order to obtain clarity regarding legal aspects of agent technology
we should await legislation or precedential judgements.

(Translated from Swedish by Jonas Edlund)

7.6 Summary and Discussion

7.6.1 Business Logic
While agents in electronic commerce have been a hot topic for
some time now, we have not yet seen the general shopping agent,
roaming the entire Internet in order to find the best buying oppor-
tunity for its master. Whether the agents of SICS MarketSpace or

81

anything like them will fill that niche remains to be seen. The
foundations for secure and effective management of migration,
messaging, including forwarding of messages, storage and restor-
age of mobile agents seems to be at hand in commercial systems.
We also have the knowledge and technology to implement an ef-
fective inter-agent communication language. Secure economic
transactions over the net also seem to be a working reality. Maybe
the business-to-business market (B2B) will be the first to enjoy the
new technologies. In U.S.A., the information-consulting firm For-
rester Research in Cambridge, Mass., has estimated the B2B mar-
ket to be worth about U.S.$183 billion by 2001, while the busi-
ness-to-consumer (B2C) market is only estimated to U.S.$17 bil-
lion at the same time. [CACM 1999].

The reluctance of established Internet marketplaces to lay them-
selves open for agent inspection of prices etc. has hampered the
emergence of general consumer shopping agents. This is under-
standable. OnSale have advertisements on every page so selling
ads is a substantial part of OnSale’s income. Software agents are
probably not open for influence from ads.

We note that marketplaces like OnSale and eBay do not need to
use general shopping agents in their systems implementation.
Maybe the trend towards “meta-shops” like excite will continue
towards “meta-meta-shops” covering each others supply of offers.
That could possibly result in loops in the overall system resulting
in confusing duplicate offers a problem that could possibly pave
the way for an open agent-based market in the line of the SICS
proposal.

What business logic conditions are at hand for an open agent-based
marketplace? The SICS MarketSpace is developed in close col-
laboration with Telia Research, an R&D branch of the biggest
Swedish Internet Service Provider. How can, or will it, be brought
to market? Telia can put up their own agent facility and provide
agents from a web site. If they do, will they restrict agent behavior
to enhance their own interests? That seems unlikely. Initially an
agent provider would probably give the system away for free as to
establish a critical mass of usage in some specific sectors of retail
with easily defined products, like books or CDs. Once the system
is established the agent provider can charge the users of the agents
just like a telephone company charges for using the telephone. The
business logic of open agent-systems ought to be similar to that of
telephones; the provider gains more the more we use it.

An agent provider could further extend an open agent system with
a jango.excite-like meta-facility to access vendors with no agent
enhancement as to make their offers accessible to its agents. This
wold add some complexity to the design of the agent system as

82

deals on these offers cannot be closed by the agents, but this
should not be a big problem. The agent could deliver the results of
the overall query to the user by email. In such a way the open
agent-based marketplace could benefit from the offers made by the
meta-shops and possibly hamper the turnover of those meta-shops
that make money from ads.

If we look at vendors it is likely that small vendors would be happy
to deploy open agent-systems as a means of boosting business,
while bigger vendors with already established web-shops would be
more reluctant. But as an open system starts to spread, they might
open up for agents, by self-interest, at least if they do not loose ad-
vertising potential in the process, as sketched above. Thus a shop
like eBay that does not provide banner-space for others but charge
the sellers would be in a stronger position in this regard than would
jango.excite or OnSale. At any case, web-shops can keep their old
web-based systems up while connecting to the “agent web”.

An agent EC system can be designed so that users get better con-
trol of how they give other parties access to their personal profile.
A user profile is valuable for a vendor in a web encounter as the
vendor can customize the presented page to present relevant offers.
The buying agent can choose to withhold its specific interest at a
query stage by presenting more general interests to the potential
seller and filtering the information before presenting it to the
buyer. Giving away your profile could possibly result in lower
prices.

The need for repression mechanisms towards malignant agents was
briefly touched upon i section 6.1.

7.6.2 Metadata Descriptions and
Interoperability
One subject closely related to software agents in EC is the question
of metadata descriptions of content on the web. The W3C
RDF/XML was mentioned in the section on SICS MarketSpace.
Similar work is also carried out in the CommerceNet consortium
especially in their eCo project. The aim of CommerceNet is to
make interoperability possible between major systems for EC such
as Open Trading Protocol, EDI, RosettaNet, Open Buying on the
Internet (OBI), Information and Content Exchange (CNET) and
open Financial Exchange (OFX). [Glushko, Tenebaum and Melt-
zer 1999], [CommerceNet 1999:b].

83

7.6.3 Future Winners
Who will come out as winners in the battle of systems and stan-
dards for the different areas of electronic commerce? Or more
cynically: Who will be able to impose their solution on others? We
conclude this section on EC by looking at some categories of play-
ers and their potential to succeed and impediments they may en-
counter. This may be important for computer scientists that want to
get agreement on a good technical solution. The outcome of the
competition between different technologies is not dependent only
on the quality of the technology, but also on the incentive-patterns
of the players involved, as well as, of course, on politics and
money.

7.6.3.1 Big System Providers – CommerceNet
Big system providers can often impose their solutions on the mar-
ket, especially if they team up. The CommerceNet consortium and
its according to CommerceNet [1999:a] 186 members in March
1999, including IBM, Microsoft, Sun, Netscape, the U.S. General
Services Administration, American Express, Cisco, Ericsson, GM
and HP, have invested vast resources in establishing workable
standards in e-commerce, especially in the business-to-business
domain.

Potential
Once the members of CommerceNet agree, they can point out the
way to the future with a very big hand. New e-commerce players
on the verge of equipping themselves with new systems will look
very closely to CommerceNet’s proposals, either directly or as pre-
sented to them by vigilant e-commerce consultants.

Impediments
Big organizations are slow. It takes time to agree on new solutions.
And the old players in e-commerce that already have systems that
function well (c.f. next section) may be reluctant to assimilate new
ways of doing business. If it works, don’t fix it!

7.6.3.2 Multinational Non-software Companies
Big companies can impose their own system on their own supply
chain. Cf. Gustavsson [1999].

Potential
A high level of optimization in the supply chain can be achieved
with a multi agent system. If management sees the advantages they
will possibly get the implementations and the big company will in
that way help spreading good technology.

Impediments

84

Big companies can be slow on issues outside their own product
line.

7.6.3.3 Research Labs of Universities and Independent Institutes
Much of the new technology in e-commerce has been created at
universities or independent institutes.

Potential
High level of competence, a milieu where creativity thrive, and
some freedom to set up promising projects.

Impediments
Why take the risk of starting a business when you have a steady
paycheck from the university? “Someone else can build the final
system, I do research!”

7.6.3.4 Small Companies with Win-Win Solutions
A small company with a win-win solution can change the land-
scape of the electronic marketplace rapidly. The history of elec-
tronic commerce is full of examples: Netscape, Yahoo, Excite (or
why not Microsoft…?).

Potential
The small company can make decisions fast and act swiftly. A
small company can be formed on a single effective business-
solution with no hampering considerations to legacy issues, by a
small team of dedicated people.

Impediments
A small, unknown company may have problems making its voice
heard. But then again, the Internet and WWW present enormous
potential for the innovative newcomer.

A small company may lack the critical mass of competence to re-
alize a solution not thought of by the big players. But then again,
the right mix of competence can often occur when the right people
meet within the framework of a research institution, a big company
or a conference.

85

8 Impersonating Agents
Impersonating agents are digital or computerized actors. They
convey a believable persona to the spectator/user. In 1966 Joseph
Weizenbaum at MIT wrote a Fortran program called Eliza based
on string matching, impersonating a psychologist via a text-based
user interface. Rumor has it that his secretary found it so believable
that she asked the program for advise on whether or to leave her
boyfriend. Weizenbaum, [1966] is a proper source for Eliza that
we have not yet obtained. Modern Elizas are available on the web,
e.g. Josef Stefan Institute, [1999] and Goerlich, [1997].

There is an increasing interest in what can actually be done with
computers in the area of creating believable characters. Modern
techniques like voice synthesis, voice recognition and 3D-graphics
make it possible to turn a computer into a virtual theater.

Impersonating agents qualify by definition to agency at the level of
interface. Some of them seem to do nothing more, but others are
based on techniques that give more autonomy to the object that
represents the agent in the computation, as does Creatures.

8.1 Interface Level

8.1.1 Virtual Friend
The California-based company Haptek has created 3D characters
called Virtual Friend that communicate with voice synthesis for
output. As yet, they use text messages for input. It is not very in-
telligent, as it is only capable of holding monologues or returning
the input text as speech, but that it does very well. It can also sing a
few songs and the characters come across in nice 3D graphics.
Downloads are available for free at Haptek [1999].

8.1.2 Sylvie and Julia
Sylvie of Virtual Personalities is a chatterbot, a chattering robot. In
the downloadable demo she interfaces the user through a rather
static graphical interface displaying her face and moving her lips as
she speaks. She requires text for input and answers with speech
synthesis just like Virtual Friend but she also displays a superficial

86

intelligence. Sylvie is a descendant of the famous Julia, a MUD*
interfaced chatterbot created by Michael Mauldin, co-founder of
Virtual personalities. Like Eliza, Julia was based on string-
matching technique and also grouping of conversation topics. She
is presented at length in Foner [1993], a paper available at online at
MIT media Lab, and receiving more hits than any other of their
papers.

We must unfortunately issue a warning regarding the Sylvie 1.36
demo download. Do not ask Sylvie for the value of � (pi)! We did,
and the bitch stalled the machine, a PC running Windows NT 4. Cp.
Foner [1993]. [Virtual Personalities 1999]

8.2 Implementation level

8.2.1 Artificial Life: Creatures
The British company CyberLife has created an entertaining prod-
uct line called Creatures. The software displays characters in flat
but layered graphics (2½D). The agents impersonating these char-
acters are implemented as autonomous objects in a bottom-up
fashion with their own genes and metabolism and a neural-net
“brain” for self-modifying response to stimuli. The characters live
in a virtual world where they play with their toys, search for food
and also communicate in a simple verb-object language. They eat,
grow, mate and reproduce. When Stephen Grand, chief technician
of CyberLife presented Creatures at the Autonomous Agents ’97
Conference the audience listened with growing suspicion, until he
run the software. It actually worked as he had described. Grand
and his company are currently looking at other application areas
for their technology. [Creatures 1999], [CyberLife 1999:a], [Cy-
berLife 1999:b], [Elliot and Brzezinski 1998].

8.2.2 Real Life on Computing Substrate
In his IEEE Expert article, Grand [1997], the author argues for the
possibility of real life on a computing substrate. If, he argues, we
can represent elementary particles in computers reasonably accu-
rately, then we can also represent atoms, and then molecules, pro-
teins, cells and ultimately living creatures. Thus we could create a
virtual world inhabited by creatures that actually are alive, not just
look as if they were. We can argue that those creatures would live
on the substrate of the computing machinery in the same way as
we live on the substrate of self-organizing matter. We can even ar-

87

gue that this is what Grand and his colleagues have done with
Creatures, even though they have included some top-down con-
structs in order to create them and keep them in place.

We want to make clear what we mean when we say that humans
live on a substrate of self-organizing matter and energy. According
to contemporary physics, at the Big Bang the universe was made
up of nothing but self-organizing matter and energy, and, as far as
physics is concerned, it still is. Mainstream modern physics have
no theories on spirit as something qualitatively different from en-
ergy and matter and that is an autonomous agent in its own, i.e.
physics do not believe in spirits. In biology the situation is the
same and physicians of today do not expect to find the part in the
human body where the actual “person” resides, like did their col-
leagues in the seventeenth and eighteenth centuries. Looked upon
as an object of physics, the universe still contains nothing but self-
organizing matter and energy. So that is what rocks are and that is
what humans are composed from. We live and breed on a substrate
of self-organizing matter and energy. In a way the distinction be-
tween matter and spirit turns into a question of abstraction level.
We perceive each other as humans, having a human gestalt*. We
exist at that level, we are composed of self-organizing matter and
energy.

For more on artificial characters, see Extempo [1999] or Maes
[1995:b].

88

9 Conclusions
As software becomes more complex and more tasks are automated
and taken over by computer systems two issues emerge of interest
in regard to software agents:

• We prefer complex systems to be autonomous. This means
adapting to changing environments and ability to handle com-
plex tasks without direct manipulation from users. Different
agent technologies, some of them presented in this paper, are,
and will increasingly be of great help in achieving this goal.

• We want software to support us and to be user friendly.
Agency at the level of user interface means software that help
us in our daily lives, on- and offline.

There are strong implications that open agent-based systems for
automated electronic commerce will be deployed to the benefit of
consumers and small companies. A transparent web accessible
market can connect consumers and producers on a global basis.
This will have far-reaching consequences for business as we know
it today.

No doubt, concepts like “autonomy”, “intelligence” and “agency”,
when applied to software, are seductive to the way we think. If you
are not a sales person, the less you anthropomorphize your soft-
ware, the better off you are. But then again, every once in a while,
we are all salespeople.

89

10 References
Enclosed links were not broken at the time of writing, November
1998 – April 1999.

Agent Society (1997:a). Report on First Meeting of the
Agent Interop Group 9 – 10 Feb 1997.
http://www.agent.org/society/meetings/workshop9702/
report.html.

Agent Society (1997:b) Open Interoperability Protocol and
Frameworks, Design Activities.
http://www.agent.org/pub/satp/satp-index.html.

Agent Society (1998). Home site. http://www.agent.org/.

Agha, G. (1986). ACTORS: A Model of Concurrent Com-
putation in Distributed Systems. The MIT Press: Cam-
bridge, MA.

Agha, G., Wegner, P., and Yonezawa, A., editors (1993).
Research Directions in Concurrent Object-Oriented
Programming. The MIT Press: Cambridge, MA.

Amazon, (1999). http://auctions.amazon.com/.

Andersen Consulting, (1999).
http://www.ac.com/services/cstar/cstar_child/
ecpocketbf_cn.htm.

AuctionBot, (1999). http://auction.eecs.umich.edu/.

Austin, J., L. (1962). How to Do Things with Words.
Clarendon Press.

Bates, J. (1994). The role of emotion in believable agents.
Communications of the ACM, 37(7):122 – 125.

Banchs, A. (1997). Related Links. On line list of mobile
code projects.
http://www.icsi.berkeley.edu/~banchs/work/links.html.

Banyan, (1999). http://www.banyan.com.

Barnes and Noble, (1999). www.barnesandnoble.com/.

90

Bates, J., Bryan Loyall, A., and Scott Reilly, W. (1992a).
An architecture for action, emotion, and social behav-
ior. Technical Report CMU-CS-92-144, School of
Computer Science, Carnegie-Mellon University, Pitts-
burgh, PA.

Bates, J., Bryan Loyall, A., and Scott Reilly, W. (1992b).
Integrating reactivity, goals, and emotion in a broad
agent. Technical Report CMU-CS-92-142, School of
Computer Science, Carnegie-Mellon University, Pitts-
burgh, PA.

Bid2Day, (1999): http://www.bid2day.com/.

CACM (1999). Communications of the ACM, March
1999/Vol. 42, No. 3.

Chandrasekaran, B., Russ, J., MacGregor, R., Swartout, B.
(1999). What Are Ontologies, and Why Do We Need
Them. IEEE Intelligent Systems, vol. 14, No. 1, 1999.
January/February 1999.

Cheng, Y. (1997). A Comprehensive Security Infrastruc-
ture for Mobile Agents. Department of Computer and
Systems Sciences, University of Stockholm/Royal In-
stitute of Technology.

Chess, D. M., Harrison, C. G. and Kershenbaum, A.
(1995). Mobile Agents: Are they a good idea? Re-
search report, IBM T.J. Watson Research Center, P.O.
Box 704, Yorktown Heights, NY 10598.
http://www.research.ibm.com/massdist/mobag.ps.

CommerceNet (1999:a) Web-site, members list. March
1999.
http://www.commerce.net/
cgi-bin/memshow/memalpha.cgi?alpha=all.

CommerceNet (1999:b) Web-site.
http://www.commercenet.com/

Creatures (1999). Home-page http://www.creatures.co.uk/.

CyberLife (1999). http://WWW.cyberlife.co.uk/.

CyberLife (1999:b). What is CyberLife?
http://www.cyberlife.co.uk/cyberlife/archives/
whatiscyberlife.html.

Dickinson (1997). Agent Standards. HP Technical Report.
HPL-97-156. Hewlett-Packard, HP Labs Bristol Agent
Technology Group.
http://agents.hpl.hp.com/papers.htm.

91

Dartmouth (1997). Overview of mobile Agents.
http://www.cs.dartmouth.edu/~agent/general/
overview.html. Last updated on January 27, 1996.

Dartmouth (1998). D’Agents.
http://www.cs.dartmouth.edu/~agent/

Dawkins, R. (1976). The Selfish Gene. Second edition
1989. Oxford University Press. Paperback (October
1989) ISBN: 0192860925.

eBay (1999). http://www.ebay.com/.

Eisenhardt, K. (1989). Agency Theory: An Assessment and
Review. Academy of Management Review, pp. 57-74.

Electronic Commerce (1997).
http://www.t-stone.co.uk/ec/glossary.html.

Elliot, C., Brzezinski, J. (1998). Autonomous Agents as
Synthetic Characters. AI Magazine vol. 19, no. 2.
AAAI.

Eriksson, J., Finne, N. (1996). MarketSpace: An open
Agent-based Market Infrastructure. Computer Science
Department, Uppsala University. Masters Thesis.
http://www.sics.se/~joakime/thesis.ps.

Eriksson, J., Finne, N., Janson, S. (1998:a). To Each and
Everyone an Agent: Augmenting Web-based Com-
merce with Agents. Intelligent Systems Laboratory,
Swedish Institute of Computer Science.

Eriksson, J., Finne, N., Janson, S. (1998:b). SICS Market-
Space: an agent-based market infrastructure. The ISL
laboratory at SICS. Proceedings of the 1998 Workshop
on Agent-Mediated Electronic Trading. Springer-
Verlag, 1998.
http://www.sics.se/publications/marketspace.html.

Ethington, R (1998). Distributed Object Computing. Fea-
ture story in Java Report Online.

Etzioni, O., Lesh, N., and Segal, R. (1994). Building soft-
bots for UNIX. In Etzioni, O., editor, Software Agents
– Papers from the 1994 Spring Symposium (Technical
Report SS-94-03), pp 9 – 16. AAAI Press.

EUNett (1999). http://nettvik.no/pressensplass/agenter/.

Extempo (1999). http://WWW.extempo.com/.

92

Finin, T., Fritzson, R. (1994). KQML as an Agent Commu-
nication Language. The Proceedings of the Third In-
ternational Conference on Information and Knowledge
Management (CIKM'94), ACM Press.
This work is related to the DARPA knowledge Sharing
Effort.
http://www.cs.umbc.edu/kqml/papers/
kqml-acl-html/root2.html.

FIPA (1999). Foundation for Intelligent Physical Agents.
http://www.fipa.org.

Firefly, (1999). http://www.firefly.com/.

Foner, L. (1993). What's an Agent, Anyway? A Sociologi-
cal Case Study.
http://foner.www.media.mit.edu/people/
foner/Julia/Julia.html.

Franklin, S. and Graessner, A. (1996). Is it an Agent, or just
a Program? A Taxonomy for Autonomous Agents. In
Proceedings of the Third International Workshop of
Agent Theories, Architectures and Languages.
Springer-Verlag.
http://www.msci.memphis.edu/~franklin/
AgentProg.html.

Gardner, E. (1996). Behind the Scenes. Standards Hold
Key to Unleashing Agents. Internet.com. 1996-04-29.
http://www.internetworld.com/print/1996/04/29/news/
unleashing.html.

Genesereth, M. R. and Ketchpel, S. P. (1994:a). Software
agents. Communications of the ACM, 37(7):48 – 53.

Genesereth, M. R. and Ketchpel, S. P. (1994:b). Software
agents. http://logic.stanford.edu/papers/agents.ps.

Genesereth, M., R. (1)(No date).
http://Logic.Stanford.EDU/kif/

General Magic (1998:a). Agent Technology.
http://www.generalmagic.com/technology/
mobile_agent.html.

General Magic (1998:b). Mobile Agents White Paper.
http://www.generalmagic.com/technology/
techwhitepaper.html.

Glushko, R., Tenebaum, J., and Meltzer, B. (1999). An
XML Framework for Agent-based E-commerce.
Communications of the ACM, March 1999/Vol. 42,
No. 3.

93

Goerlich, R. C. (1997).
http://philly.cyberloft.com/bgoerlic/eliza.htm.

Grand, S. (1997). Three observations that Changed my
Life. IEEE Expert, November/December 1997.

Gruber, T. (1999). What is an Ontology?
http://www-ksl.stanford.edu/kst/
what-is-an-ontology.html.

Guttman, R., Moux, A. and Maes, P. (1998). Agent-
mediated Electronic Commerce: A Survey. Software
Agents Group, MIT Media Lab.
http://ecommerce.media.mit.edu/papers/ker98.pdf.

Gustavsson, R. (1999). Agents with Power. Communica-
tions of the ACM, March 1999, Vol. 43, No. 3.

Haptek (1999). http://WWW.haptek.com/.

Hayes-Roth, B., Johnson, V., Gent, R. van, Wescourt, K.
(1999). Staffing the Web with Interactive Characters.
Communications of the ACM, March 1999, Vol. 43,
No. 3.

Hultmark, C. (1998). Elektronisk handel och avtalsrätt.
Norsteds Juridik AB. ISBN 91-39-20105-8 [In Swed-
ish].

IBM (1998). IBM Aglet Software Development Kit home
page. http://www.trl.ibm.co.jp/aglets.

Jackson Higgins, K. (No date). Your Agent is Calling.
http://www.firstfloor.com/editorial/622close.html.

jango.excite (1999). http://jango.excite.com.

JATLite (1999). Java platform with support for KQML
messaging. http://java.stanford.edu/java_agent/html/.

Josef Stefan Institute (1999). Eliza.
http://www-ai.ijs.si/eliza/eliza.html.

Jörgensen, N. and Svensson, J. (1986). Nusvensk gramma-
tik. Liber: Malmö Sweden. ISBN 91-38-61700-5 [In
Swedish].

Kaiserslautern (1997). University of Kaiserslautern.
http://www.uni-kl.de/AG-Nehmer/Projekte/Ara/.

Keahey, K. (1998). A Brief Tutorial on CORBA. The Ob-
ject Management Group.
http://www.cs.indiana.edu/hyplan/kksiazek/tuto.html.

94

Knowledge Sharing Effort (1994).
http://www.ksl.Stanford.EDU/
knowledge-sharing/papers/kse-overview.html.

Krogh, C. (1996). With a license to KILL –9. Slideshow on
agent technology.
http://www.informatics.sintef.no/~chk/krogh/
papers/dnd96a/tsld016.htm.

Lange, D. and Oshima, M. (1998). Programming and De-
ploying Java™ Mobile Agents with Aglets™. Com-
puter & Engineering Publishing Group. ISBN: 0-201-
32582-9.

Lange, D. and Oshima, M. (1999). Dispatch your agents;
shut off your machine. Communications of the ACM,
March 1999/Vol. 42, No. 3.

Lotus (1999). http://www.lotus.com.

MIT (1999). MIT Media Lab home-page.
http://lcs.www.media.mit.edu/projects/amalthaea/.

Maes, P. (1994). Agents that reduce work and information
overload. Communications of the ACM, 37(7):31 – 40.

Maes, P. (1995:a). Intelligent Software. Scientific Ameri-
can, Vol. 273, No. 3, pp. 84 – 86, Scientific American,
Inc. http://pattie.www.media.mit.edu/people/pattie/
SciAm-95.html.

Maes, P. (1995:b). Artificial Life meets Entertainment:
Lifelike Autonomous Agents. Special Issue on New
Horizons of Commercial and Industrial AI, Vol. 38,
No. 11, pp. 108 – 114, Communications of the ACM,
ACM Press, November 1995.
http://pattie.www.media.mit.edu/people/pattie/
CACM-95/alife-cacm95.html.

Maes, P., Guttman R., Moukas, A. (1999). Agents that buy
and sell. Communications of the ACM, March
1999/Vol. 42, No 3.

Market Maker, (1999). http://maker.media.mit.edu/.

McCarthy, J. (1979). Ascribing mental qualities to ma-
chines. Technical report, Stanford University AI Lab.,
Stanford, CA 94305.
http://www-formal.stanford.edu/jmc/ascribing.html.

95

Mchacko (1999). The Telescript Language Reference Ver-
sion 1.0.
http://science.gmu.edu/~mchacko/Telescript/docs/
telescript.html,
http://science.gmu.edu/~mchacko/Telescript/docs/
TSLangRef_Preface_2.html.

Microsoft Cooperation (1999).
http://www.microsoft.com/com/dcom.asp

MIT Media Lab, Agents, (1999).
http://agents.www.media.mit.edu/groups/agents/.

Mitsubishi (1999). Mitsubishi Electric Information Tech-
nology Center America
(ITA).http://www.meitca.com/HSL/Projects/
Concordia.

Merriam-Webster (1999). Encyclopedia Britannica OnLine.
Merriam-Webster's Collegiate Dictionary.
http://members.eb.com.

Moore, D. (1998). Software Agents: Creating a Structure
for Cyberspace. Web-site of Dana Moore.
http://home.att.net/~dana.moore/agent_2.htm.

Moore, D., Paciorek, N., Wong, D. (1999). Java-based Mo-
bile Agents. Communications of the ACM, March
1999, Volume 42, no. 3.

Moukas A. (1996), Amalthaea: Information Discovery and
Filtering using a Multiagent Evolving Ecosystem, Pro-
ceedings of the Conference on Practical Application of
Intelligent Agents & Multi-Agent Technology, Lon-
don, 1996.
http://lcs.www.media.mit.edu/projects/amalthaea/.

Mozart (1999). The Mozart Programming System. Home-
page. Pages on Mozart:
http://www.mozart-oz.org/,
http://grizzly.ps.uni-sb.de/.

Mozart (1999:a). The Mozart Programming System. Tuto-
rial of Oz: Introduction.
http://www.mozart-oz.org/
documentation/tutorial/node1.html#label1.

Mozart (1999:b). Site of Mozart-org. http://www.mozart-
oz.org/download/.

My Yahoo (1999). http://my.yahoo.com.

96

ObjectSpace Voyager (1999).
http://www.objectspace.com/products/
voyager/index.html.

OMG (1998). CORBA Overview.
http://www.infosys.tuwien.ac.at/Research/Corba/
OMG/arch2.htm#446864.

OMG (1999): http://www.omg.com/.

OnSale (1999). http://www.onsale.com/.

Passagen, (1999). Web-site. http://www.passagen.se/.

Personalogic (1999). Web-site.
http://www.personalogic.com/.

Petrie, C., J, (1996). Agent-Based Engineering, the Web,
and Intelligence. IEEE Expert December 1996.
http://cdr.stanford.edu/NextLink/Expert.html.

PointCast (1999). http://www.pointcast.com.

Rubin, A. D. and Geer, Jr., D. E. (1998). Mobile Code Se-
curity. IEEE Internet Computing, vol. 2 number 6 dec.
1998. Issue on Security and Mobile Code. IEEE Com-
puter society Publications Office, Los Alamitos, CA,
USA. Available on line for members of the Computer
Society at http://computer.org/internet.

Shoham, Y. (1993). Agent-oriented programming. Artifi-
cial Intelligence, 60(1):51 – 92.

SICS (1999). Swedish Institute of Computer Science. In-
telligent Systems Laboratory. http://www.sics.se/ps/.

SITI (1999). Tahuti-project.
http://www.sisu.se/~alexandr/Tahuti/index.html

Sun Corporation (1999).
http://java.sun.com/products/jdk/rmi/index.html.

Sycara, K. P. (1998). The Many faces of Agents. In AI
Magazine – An official publication of the American
Association of Artificial Intelligence Volume 19 No 2,
summer 1998, 11–12. ISSN 0738-4602.
http://www.aaai.org

Tacoma (1999). The TACOMA project (Tromsø And COr-
nell Moving Agents). http://www.tacoma.cs.uit.no/.

Tanenbaum, A. (1992). Modern Operating Systems, Pren-
tice-Hall, New Jersey. ISBN 0-13-595752-4.

97

Tham, C., Friedman, B. (1996). Common Agent Platform
Architecture. The Agent Society.
http://www.agent.org/pub/satp/papers/satp.html.

Tete-à-Tete, (1999).
http://ecommerce.media.mit.edu/tete-a-tete/.

UMBC (1993). UMBC KQML Web, Computer Science &
Electrical Engineering, University of Maryland Balti-
more County, Baltimore Maryland 21250 USA.
http://www.cs.umbc.edu/kqml/kqmlspec/spec.html.

UMBC (1999:b) Agent Web, Knowledge Sharing Effort,
http://WWW.cs.umbc.edu/agents/kse.shtml.

Virtual Personalities (1999). http://www.vperson.com/.

Verity (1999). http://www.verity.com.

W3C (1996). Mobile Code Systems.
http://www.w3.org/MobileCode/

W3C (1999). Resource Description Framework (RDF)
Model and Syntax Specification. W3C Recommenda-
tion 22 February 1999. http://www.w3.org/TR/REC-
rdf-syntax/.

Waldo, J., Wyant, G., Wollrath, A., Kendall, S. (1994). A
Note on Distributed Computing. Sun Microsystems,
Inc., 901 San Antonio Road, Palo Alto, CA 94303
USA. http://www.sunlabs.com/techrep/1994/
abstract-29.html.

Waltzman, R. (1998). Industrial Applications of Artificial
Intelligence. Lecture notes.

Weizenbaum, (1966). Eliza – A Computer Program for the
study of natural communication between man and ma-
chine. Communications of the ACM, Vol. 9, No. 1,
January 1966.

White, J. (1996). Prospectus for an Open Simple Agent
Transfer Protocol. General Magic Inc.
http://www.agent.org/pub/satp/prospectus3.html.

Wooldridge, M. and Jennings, N. R. (1995). Intelligent
Agents: Theory and Practice. In Knowledge Engi-
neering Review Volume 10 No 2, June 1995, 115-152.
© Cambridge University Press, 1995.
http://gryphon.elec.qmw.ac.uk/dai/pubs/
KER95/index.html.

98

Ygge, F. (1998). Market-Oriented Programming and its
Application to Power Load Management. Ph.D. thesis.
http://www.enersearch.se/~ygge/Work/Pubs/
thesis/thesis.html.

99

11 Glossary
This glossary explains some terms in the paper. It is based on a
glossary found at Electronic Commerce (1997).

AI
Artificial Intelligence.

Animism
From German Animismus, from Latin anima (= soul)
1. a doctrine that the vital principle of organic development is immate-

rial spirit
2. attribution of conscious life to objects in and phenomena of nature

or to inanimate objects
3. belief in the existence of spirits separable from bodies
[Merriam-Webster, 1999]
Common in primitive religions.

API
Application Programming Interface.

ARPA
See DARPA.

CAP
Common Agent Platform. The proposed implementation of SATP*.

CPU
Central Processing Unit. The unit, most often an integrated circuit, that
does the actual work in a computer.

Corba
Common Object Request Broker Architecture. The core of the Object
Management Architecture defined by the Object Management Group,
OMG*.

DAI
Distributed artificial intelligence.

DARPA
Defense Advanced Research Projects Agency. The central US Depart-
ment of Defense research organization. Sometimes in it’s history called
ARPA. Responsible for breaking new ground in many areas of com-
puter science. DARPA created ARPA-net, a computer network system
later to be known as the Internet. http://www.darpa.mil/.

100

DCOM
A platform for distributed computing from Microsoft.

Demon of Laplace
Pierre-Simon Laplace (1749–1827), French mathematician, astrono-
mer, and physicist. Laplace argued that a demon with complete knowl-
edge of the positions and velocities of all the particles in the universe
and infinite calculating capabilities would be able to describe the com-
plete state of the universe at any point in time, past or coming.

EC
Electronic Commerce*.

EDI
Electronic Data Interchange*.

Electronic Commerce
Can be simply described as doing business electronically. More pre-
cisely it is conducting the exchange of information using a combination
of structured messages (EDI), unstructured messages (Email), data,
databases and database access across the entire range of networking
technologies. The sharing of information with business partners leads
to cost savings, increased competitiveness, improved customer relations
and greater efficiency through the redesign of traditional processes.

Electronic Data Interchange (EDI)
Electronic data interchange (EDI) is the exchange of documents in a
structured form between computers via telephone lines. It is being in-
creasingly used to great effect worldwide, most commonly, but not ex-
clusively, for purchasing and distribution – orders, confirmations, ship-
ping papers and invoices – but also for dentists payments and the dis-
tribution of exam results.

Electronic Directories
A directory is quite simply a database containing information held in a
logical structure. Key details about the users of messaging systems are
kept here, most importantly their address. X.500 Directories can be
distributed, residing on several computer systems, perhaps spread over
a number of sites. However the combined information can be accessed
from a single point. This has numerous advantages for organizations
not least the additional processing power. Furthermore, if one machine
goes down, the directories continue to work.
The information structure behind an X.500 Directory is called the Di-
rectory Information Tree (DIT) where information is held in hierarchi-
cal form as required by the organization. It may start with countries at
the top, followed by organizations, then departments and finally indi-
viduals.

101

Electronic purses
Using smart card technology an electronic purse is created with cash
stored electronically on a microchip, creating a pre-payment card,
which can then be used to buy a range of goods and services. This al-
lows the safe transfer of value to another electronic purse. Trials are
underway in many countries – in the UK, the Mondex trial started in
1995.

Email
Electronic Mail (Email) is the electronic exchange of unstructured in-
formation. Users can send, receive, forward and store text messages or
chunks of data quickly and easily, regardless of time zone or geo-
graphic location. It is fast becoming a quick and efficient alternative to
more traditional forms of communications such as memos, facsimiles,
telephone, voice mall, the postal system and even face to face meetings.

Extranet
An Internet-based virtual network joining the Intranets of different en-
terprises together, making a collaborative inter-enterprise electronic
community.

FEDI
Financial Electronic Data Interchange (FEDI) involves the computer to
computer transmission of both payment instructions and remittance
details using international message standards. An example would be
trade payments – e.g. a retailer sending a payment to a supplier in pay-
ment of multiple invoices.

Gestalt
A structure, configuration, or pattern of physical, biological, or psy-
chological phenomena so integrated as to constitute a functional unit
with properties not derivable by summation of its parts. [Merriam-
Webster 1999]

Hybrid EDI
Introduced by service providers to accommodate situations in which
only one trading partner is capable of using EDI, while the other con-
tinues to trade using traditional methods involving paper or fax. An ex-
ample would be a trading partner sending an electronic purchase order
that is then faxed by a service provider to the recipient.

IDL files
Interface Definition Language. ISO standard no. 14750. Commonly re-
ferring to the OMG IDL.
Descriptive title: Information technology—Open Distributed Process-
ing—Interface Definition Language
Source: Richard Mark Soley <soley@omg.org>

102

IIOP (Internet Inter-ORB Protocol)
A transport protocol which is part of the Object Management Group’s
Common Object Request Broker Architecture (CORBA) for distributed
computing.

Internet
A global network of networks, it provides connections for sending
electronic mail messages, transferring files, linking to other computers
and accessing information available in a variety of different forms, such
as bulletin boards for people with common interests or electronic prod-
uct catalogues.

Internet Cash
Purchased from an issuer (bank or credit institution) and then ex-
changed freely over the Internet. It is aimed at low value payments,
both cross border and domestic. Internet cash will be bought in local
currency, with the buyer then sending the ecash to the seller in an
Internet message.

Interpreter
An interpreted computer language like Oz, Lisp or Scheme, is not run
directly “on the CPU”, but is run by an interpreter or virtual machine
(VM for short), a program, that is executed on the computer. Programs
written in an interpreted language can be made platform independent if
interpreters are installed on the machines on which the programs are to
be run. The interpreters in their turn are for the most part platform de-
pendent. In the Java language the source code is compiled to
“bytecode” that is subsequently run on the Java interpreter, the Java
Virtual machine.

Intranet
Narrowly, it is the use of low-cost Internet technologies to create inter-
nal information networks. More broadly, it spans an organization’s en-
tire information network, including the use of Internet technologies as
well as PC-to-host connectivity, mobile communications, client/server
networks and integration of data warehouses, for example.

IPR
Intellectual Property Rights.

Kernel
The central part of the operating system.

KIF
Knowledge Interchange Format. The knowledge representation format
used in the inter-agent communication language of ARPA’s Knowl-
edge Sharing Effort. Based on first order predicate logic.

103

Knowledge Sharing Effort
An ARPA project aiming at reusable, component-based, distributed
knowledge systems.

KQML
The “outer” language of ARPA’s KSE. A language and a set of proto-
cols that support computer programs in identifying, connecting with
and exchanging information with other programs.

KSE
See Knowledge Sharing Effort.

MAS
Multi agent system*.

Micropayments
A system for paying small amounts of money directly from your own
computer, or via a (mobile) software agent.

MIME
Multipurpose Internet Mail Extensions. An e-mail format capable of
handling non-English characters, pictures and video.

MUD
Multi User Domain (Multi User Dungeon). A normally text-based web-
interfaced virtual reality. Users can log in, chat with other users currently on
the domain and move between different localities, all by text IOU.

Multi Agent System
Agents cooperate in a system in order to solve a common problem or to
serve their own best interests.

Multimedia
Multimedia represents the merging of the computer, communications
and broadcasting industries. By combining a variety of information
sources, such as voice, graphics, animation, images, audio and video in
an exciting and highly dynamic medium, multimedia systems will
revolutionize the way we work, learn and play.

ORB
Object Request Broker.

OO
Object Oriented.

Object Request Broker
ORB in short. Communication infrastructure between clients issuing a
request and servers/objects responding to these requests. Most often re-
ferring to CORBA-compliant ORBs.

104

OMG
Object Management Group. A non-profit corporation, the Object Man-
agement Group (OMG) was founded in 1989 by eight companies:
3Com Corporation, American Airlines, Canon, Inc., Data General,
Hewlett-Packard, Philips Telecommunications N.V., Sun Microsystems
and Unisys Corporation. Through the OMG's commitment to develop-
ing technically excellent, commercially viable and vendor independent
specifications for the software industry, the consortium now includes
over 800 members. OMG is the source of the Corba* specification.
http://www.omg.org/.

Online Catalogue
An online catalogue is basically a web site that allows products to be
viewed and ordered online. To help with shopping online, the customer
needs an electronic trolley to wheel round the catalogue and load up
with shopping.

PDF
Portable Document Format. PDF is a universal electronic file format.
The PDF format is modeled after the PostScript language and is device-
and resolution-independent. Documents in the PDF format can be
viewed, navigated, and printed from any computer regardless of the
fonts or software programs used to create the original. PDF files can be
delivered as many times as needed over any electronic medium – the
Web, CD-ROM, network servers, on-line services, email, and more.
http://web7.whs.osd.mil/corres/viewing/pdfdef.htm.

PDI
Personal digital assistant. Normally an agent appearing at your work-
station environment.

Purchasing card
Aimed at the business market, the purchasing card allows company
staff to deal directly with suppliers and reduce costs by cutting out pa-
per, e.g. the need for a purchase order. Orders can be placed over the
phone and the company receives management information detailing
spending by employee, supplier etc.

RDF
Resource Description Framework. A meta-data system.
http://www.w3.org/TR/REC-rdf-syntax/.

Remote Method Invocation
Cf. RMI.

105

RMI
Remote Method Invocation in Java. An Object Oriented version of
RPC. Member functions and procedures of objects are called methods
in the OO* world. http://java.sun.com/products/jdk/rmi/index.html.

Rn

Mathematics. R are the real numbers. R2 are the real numbers in two
dimensions, e.g. the points in a plane. R3 are the real numbers in three
dimensions, e.g. the points in three-dimensional space. Rn are the real
numbers in n dimensions, where n stands for any integer bigger than
zero.

RPC
Remote Procedure Call. A design solution that makes inter-
process/inter-machine communication transparent to the programmer.
A call to a procedure on another machine looks like an ordinary proce-
dure call. See [Tanenbaum 1992].

SATP
Simple Agent Transfer Protocol. A “http” for agents, proposed to W3C
in 1996 by James White and others. To be implemented by CAP, the
Common Agent Platform.

SICS
Swedish Institute of Computer Science.

Smart cards
A plastic card incorporating an embedded microchip - a tiny computer.
In extensive use in France and Germany.

Tacoma
The TACOMA project (Tromsø And COrnell Moving Agents).
http://www.tacoma.cs.uit.no/.

Tcl
Tcl (pronounced Tickle) is a general purpose programming language
originally intended to be embedded in other applications as a configu-
ration and extension language. Also used in mobile agent systems
Agent Tcl and Tacoma. The success of one its most important embed-
dings, the Tk toolkit for the X Windows System, has resulted in Tcl
and Tk together being most heavily used for building graphical user
interfaces (GUIs). It is also heavily used as a scripting language like
Awk, Perl or Rexx, and (as Expect) is used to script interactive appli-
cations (e.g., to automate telnet logins to various information vendors).
http://www.lib.uchicago.edu/keith/tcl-course/tcl-course.html.

106

Theodicy
Modification of French théodicée, from Latin theo (= god) and Greek
dike (= judgment). Defense of God's goodness and omnipotence in
view of the existence of evil.

Virtual Machine
Same as interpreter*.

VM
Virtual Machine*.

W3C
World Wide Web Consortium. The W3C is a world wide industrial
consortium. It was founded in 1994 to lead the World Wide Web to its
full potential by developing common protocols that promote its evolu-
tion and ensure its interoperability. W3C is jointly hosted by the Mas-
sachusetts Institute of Technology Laboratory for Computer Science
[MIT/LCS] in the United States; the Institut National de Recherche en
Informatique et en Automatique [INRIA] in Europe; and the Keio Uni-
versity Shonan Fujisawa Campus in Japan. http://www.w3.org/.

Watermarking
Cryptological techniques for placing meta-information in a text- or im-
age document. This information can contain data on IPR issues and
also used for making the document useless of these IPR rights are vio-
lated.

World Wide Web (WWW)
Currently the fastest-growing aspect of the Internet, it allows informa-
tion to be accessed by subject matter regardless of its location – a real
advantage in a network as vast and complex as the Internet. Users move
automatically from one database (or site) of interest to another using
“hyperlinks”. Increasing levels of complexity enable interactive, mul-
timedia facilities to be developed.

X.400
A set of internationally-agreed recommendations describing a standard
approach to building messaging Systems which can be used to carry
Email, EDI, fax and a range of other data. X.400 boasts a number of
key features not available on Internet mail systems, including notifica-
tions confirming the delivery or non-delivery of messages and security.

107

X.500
Comparable to an electronic yellow pages where a wide variety of data
can be stored – names, Email and postal addresses, phone numbers,
even photos and video clips. Information on machines and the routing
of Email can also be stored here and used by a message handling sys-
tem. X.500 is also a series of internationally agreed standards detailing
how to build such a directory. It is most frequently used as a corporate
address book, but has the potential to become a global source of infor-
mation.

XML
Extensible Markup Language XML is a grammar for creating mark-up
languages, so called XML applications. One such XML application is
RDF, Resource Description Framework. XML is supported by W3C.
http://www.w3.org/XML/.

